76 research outputs found

    Genome Sequence of a Beak and Feather Disease Virus from an Unusual Novel Host, Australian Boobook Owl (Ninox boobook)

    Get PDF
    The beak and feather disease virus (BFDV) is a pathogen of psittacine birds. BFDVs infecting nonpsittacine birds remain largely uncharacterized. We report the genome of a BFDV from a boobook owl (Ninox boobook), a nonpsittacine bird. The genome consisted of 1,993 bp containing two major bidirectionally transcribed open reading frames

    Museum material reveals a frog parasite emergence after the invasion of the cane toad in Australia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A parasite morphologically indistinguishable from <it>Myxidium immersum </it>(Myxozoa: Myxosporea) found in gallbladders of the invasive cane toad (<it>Bufo marinus</it>) was identified in Australian frogs. Because no written record exists for such a parasite in Australian endemic frogs in 19<sup>th </sup>and early 20<sup>th </sup>century, it was assumed that the cane toad introduced this parasite. While we cannot go back in time ourselves, we investigated whether material at the museum of natural history could be used to retrieve parasites, and whether they were infected at the time of their collection (specifically prior to and after the cane toad translocation to Australia in 1935).</p> <p>Results</p> <p>Using the herpetological collection at the Australian Museum we showed that no myxospores were found in any animals (<it>n </it>= 115) prior to the cane toad invasion (1879-1935). The green and golden bell frog (<it>Litoria aurea</it>), the Peron's tree frog (<it>Litoria peronii</it>), the green tree frog (<it>Litoria caerulea</it>) and the striped marsh frog (<it>Limnodynastes peronii</it>) were all negative for the presence of the parasite using microscopy of the gallbladder content and its histology. These results were sufficient to conclude that the population was free from this disease (at the expected minimum prevalence of 5%) at 99.7% confidence level using the 115 voucher specimens in the Australian Museum. Similarly, museum specimens (<it>n </it>= 29) of the green and golden bell frog from New Caledonia, where it was introduced in 19<sup>th </sup>century, did not show the presence of myxospores. The earliest specimen positive for myxospores in a gallbladder was a green tree frog from 1966. Myxospores were found in eight (7.1%, <it>n </it>= 112) frogs in the post cane toad introduction period.</p> <p>Conclusion</p> <p>Australian wildlife is increasingly under threat, and amphibian decline is one of the most dramatic examples. The museum material proved essential to directly support the evidence of parasite emergence in Australian native frogs. This parasite can be considered one of the luckiest parasites, because it has found an empty niche in Australia. It now flourishes in > 20 endemic and exotic frog species, but its consequences are yet to be fully understood.</p

    Characterization of a Near-Complete Genome Sequence of a Chaphamaparvovirus from an Australian Boobook Owl (Ninox boobook)

    Get PDF
    This study reports a complete genome sequence of a variant of psittacine chaphamaparvovirus 2 detected in kidney tissue from an Australian boobook (Ninox boobook), compiled using next-generation sequencing. The genome was 4,312 bp long, encoding four open reading frames. The detection of this variant in boobook represents a significant host-switching event

    Molecular Characterisation of a Novel and Highly Divergent Passerine Adenovirus 1

    Get PDF
    Wild birds harbour a large number of adenoviruses that remain uncharacterised with respect to their genomic organisation, diversity, and evolution within complex ecosystems. Here, we present the first complete genome sequence of an atadenovirus from a passerine bird that is tentatively named Passerine adenovirus 1 (PaAdV-1). The PaAdV-1 genome is 39,664 bp in length, which was the longest atadenovirus to be sequenced, to the best of our knowledge, and contained 42 putative genes. Its genome organisation was characteristic of the members of genus Atadenovirus; however, the novel PaAdV-1 genome was highly divergent and showed the highest sequence similarity with psittacine adenovirus-3 (55.58%). Importantly, PaAdV-1 complete genome was deemed to contain 17 predicted novel genes that were not present in any other adenoviruses sequenced to date, with several of these predicted novel genes encoding proteins that harbour transmembrane helices. Subsequent analysis of the novel PaAdV-1 genome positioned phylogenetically to a distinct sub-clade with all others sequenced atadenoviruses and did not show any obvious close evolutionary relationship. This study concluded that the PaAdV-1 complete genome described here is not closely related to any other adenovirus isolated from avian or other natural host species and that it should be considered a separate species

    Characterisation of a novel aviadenovirus associated with disease in tawny frogmouths (Podargus strigoides)

    Get PDF
    Aviadenoviruses are widespread in wild birds but rarely cause disease in nature. However, when naïve species are exposed to poultry or aviaries, aviadenoviruses can lead to disease outbreaks. This study characterised a novel aviadenovirus infection in a native Australian bird, the tawny frogmouth (Podargus strigoides) during an outbreak investigation. The identified complete genome of aviadenovirus, named tawny frogmouth aviadenovirus A (TwAviAdV-A) was 41,175 bp in length containing 52 putative genes. TwAviAdV-A exhibits the common aviadenovirus genomic organisation but with a notable monophyletic subclade in the phylogeny. The TwAviAdV-A virus was hepatotrophic and the six frogmouths presented to the wildlife hospitals in South Eastern Queensland most commonly exhibited regurgitation (in four frogmouths). Three were died or euthanized, two recovered, and one showed no signs. The detection of TwAviAdV-A in frogmouths coming into care re-emphasizes the need for strict biosecurity protocols in wildlife hospitals and care facilities

    Pharmacokinetic profile of enrofloxacin and its metabolite ciprofloxacin in Asian house geckos (Hemidactylus frenatus) after single-dose oral administration of enrofloxacin

    Get PDF
    The pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were determined following oral administration in 21 Asian house geckos (Hemidactylus frenatus) at a dose of 10 mg/kg. Changes in enrofloxacin and ciprofloxacin plasma concentrations were quantified at regular intervals over 72 h (1, 2, 6, 12, 24, 48, and 72 h). Samples were analysed by high-pressure liquid chromatography (HPLC) and the enrofloxacin pharmacokinetic data underwent a two-compartment analysis. Due to the limited ciprofloxacin plasma concentrations above the lower limit of quantification (LLOQ), the ciprofloxacin data underwent non-compartment analysis and the half-life was determined by the Lineweaver-Burke plot and analysis. The enrofloxacin and ciprofloxacin mean half-lives (t½) were 0.95 h (α) / 24.36 h (β), and 11.06 h respectively, area under the curve (AUC0-24h) were 60.56 and 3.14 µg/mL*h, respectively, maximum concentrations (Cmax) were 12.31 and 0.24 µg/mL, respectively, and time required to reach the Cmax (Tmax) were 1 and 2 h respectively. Enrofloxacin was minimally converted to the active metabolite ciprofloxacin, with ciprofloxacin concentrations contributing only 4.91% of the total fluoroquinolone concentrations (AUC0-24h). Based on the pharmacokinetic indices when using susceptibility breakpoints when determined at mammalian body temperature it is predicted that single oral administration of enrofloxacin (10 mg/kg) would result in plasma concentrations effective against susceptible bacterial species inhibited by an enrofloxacin MIC ≤ 0.5 µg/mL in vitro, but additional studies will be required to determine its efficacy in vivo

    Investigation into the utility of flying foxes as bioindicators for environmental metal pollution reveals evidence of diminished lead but significant cadmium exposure

    Get PDF
    Due to their large range across diverse habitats, flying-foxes are potential bioindicator species for environmental metal exposure. To test this hypothesis, blood spots, urine, fur, liver and kidney samples were collected from grey-headed flying-foxes (Pteropus poliocephalus) and black flying-foxes (P. alecto) from the Sydney basin, Australia. Concentrations of arsenic, cadmium, copper, lead, mercury and zinc and 11 other trace metals were determined using inductively coupled plasma mass spectrometry. As predicted, kidney and fur lead concentrations were lower compared to concentrations found in flying-foxes in the early 1990’s, due to reduced environmental lead emissions. Tissue cadmium concentrations in flying-foxes were higher compared to previous studies of flying-foxes and other bat species, suggesting that flying-foxes were exposed to unrecognized cadmium sources. Identification of these sources should be a focus of future research. Urine concentrations of arsenic, cadmium, mercury, and lead were proportional to kidney concentrations. Given that urine can be collected from flying-foxes without handling, this demonstrates that many flying-foxes can be assessed for metal exposure with relative ease. The analysis of blood spots was not viable because of variable metal concentrations in the filter paper used. Fur concentrations of metals correlated poorly with tissue concentrations at the low levels of metals found in this study, but fur could still be a useful sample if flying-foxes are exposed to high levels of metals. Lastly, heat inactivation had minimal impact on metal concentrations in kidney and liver samples and should be considered as a tool to protect personnel working with biohazardous samples

    Evidence of chronic cadmium exposure identified in the critically endangered Christmas Island flying-fox (Pteropus natalis)

    Get PDF
    The Christmas Island flying-fox (Pteropus natalis) is the last native mammal on Christmas Island and its population is in decline. Phosphate mining occurs across much of the eastern side of Christmas Island. The phosphate deposits are naturally rich in cadmium, and potentially other metals, which may be threatening the Christmas Island flying-fox population. To test this, concentrations of metals (cadmium, copper, iron, mercury, lead, and zinc) were measured in fur and urine collected from Christmas Island flying-foxes and interpreted concurrently with urinalysis and serum biochemistry data. In addition, metal concentrations in liver and kidney samples from two Christmas Island flying-foxes and associated histological findings from one of these individuals are reported. Fur cadmium concentrations were significantly higher in the Christmas Island flying-fox compared to concentrations found in flying-foxes in mainland Australia. Additionally, 30% of Christmas Island flying-foxes had urine cadmium concentrations exceeding maximum concentrations previously reported in flying-foxes in mainland Australia. Glucosuria and proteinuria were identified in two Christmas Island flying-foxes, suggestive of renal dysfunction. In one aged flying-fox, kidney cadmium concentrations were four-fold higher than toxic thresholds reported for domestic mammals. Microscopic evaluation of this individual identified bone lesions consistent with those described in laboratory animals with chronic cadmium poisoning. These results suggest that Christmas Island flying-foxes are being exposed to cadmium and identification of these sources is recommended as a focus of future research. Unexpectedly, urine iron concentrations in Christmas Island flying-foxes were higher compared to previous studies of Australian mainland flying-foxes, which suggests that urinary excretion of iron may be an important aspect of iron homeostasis in this species whose diet is iron rich

    Serological evidence of a pararubulavirus and a betacoronavirus in the geographically isolated Christmas Island flying-fox (Pteropus natalis)

    Get PDF
    Due to their geographical isolation and small populations, insular bats may not be able to maintain acute immunizing viruses that rely on a large population for viral maintenance. Instead, endemic transmission may rely on viruses establishing persistent infections within hosts or inducing only short-lived neutralizing immunity. Therefore, studies on insular populations are valuable for developing broader understanding of viral maintenance in bats. The Christmas Island flying-fox (CIFF; Pteropus natalis) is endemic on Christmas Island, a remote Australian territory, and is an ideal model species to understand viral maintenance in small, geographically isolated bat populations. Serum or plasma (n = 190), oral swabs (n = 199), faeces (n = 31), urine (n = 32) and urine swabs (n = 25) were collected from 228 CIFFs. Samples were tested using multiplex serological and molecular assays, and attempts at virus isolation to determine the presence of paramyxoviruses, betacoronaviruses and Australian bat lyssavirus. Analysis of serological data provides evidence that the species is maintaining a pararubulavirus and a betacoronavirus. There was little serological evidence supporting the presence of active circulation of the other viruses assessed in the present study. No viral nucleic acid was detected and no viruses were isolated. Age-seropositivity results support the hypothesis that geographically isolated bat populations can maintain some paramyxoviruses and coronaviruses. Further studies are required to elucidate infection dynamics and characterize viruses in the CIFF. Lastly, apparent absence of some pathogens could have implications for the conservation of the CIFF if a novel disease were introduced into the population through human carriage or an invasive species. Adopting increased biosecurity protocols for ships porting on Christmas Island and for researchers and bat carers working with flying-foxes are recommended to decrease the risk of pathogen introduction and contribute to the health and conservation of the species
    • …
    corecore