28 research outputs found

    Technical aspects of CT imaging of the spine

    Get PDF
    This review article discusses technical aspects of computed tomography (CT) imaging of the spine. Patient positioning, and its influence on image quality and movement artefact, is discussed. Particular emphasis is placed on the choice of scan parameters and their relation to image quality and radiation burden to the patient. Strategies to reduce radiation burden and artefact from metal implants are outlined. Data acquisition, processing, image display and steps to reduce artefact are reviewed. CT imaging of the spine is put into context with other imaging modalities for specific clinical indications or problems. This review aims to review underlying principles for image acquisition and to provide a rough guide for clinical problems without being prescriptive. Individual practice will always vary and reflect differences in local experience, technical provisions and clinical requirements

    Reduced Gray to White Matter Tissue Intensity Contrast in Schizophrenia

    Get PDF
    BACKGROUND: While numerous structural magnetic resonance imaging (MRI) studies revealed changes of brain volume or density, cortical thickness and fibre integrity in schizophrenia, the effect of tissue alterations on the contrast properties of neural structures has so far remained mostly unexplored. METHODS: Whole brain high-resolution MRI at 3 Tesla was used to investigate tissue contrast and cortical thickness in patients with schizophrenia and healthy controls. RESULTS: Patients showed significantly decreased gray to white matter contrast in large portions throughout the cortical mantle with preponderance in inferior, middle, superior and medial temporal areas as well as in lateral and medial frontal regions. The extent of these intensity contrast changes exceeded the extent of cortical thinning. Further, contrast changes remained significant after controlling for cortical thickness measurements. CONCLUSIONS: Our findings clearly emphasize the presence of schizophrenia related brain tissue changes that alter the imaging properties of brain structures. Intensity contrast measurements might not only serve as a highly sensitive metric but also as a potential indicator of a distinct pathological process that might be independent from volume or thickness alterations

    Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer

    Get PDF
    Tumour heterogeneity in primary prostate cancer is a well-established phenomenon. However, how the subclonal diversity of tumours changes during metastasis and progression to lethality is poorly understood. Here we reveal the precise direction of metastatic spread across four lethal prostate cancer patients using whole-genome and ultra-deep targeted sequencing of longitudinally collected primary and metastatic tumours. We find one case of metastatic spread to the surgical bed causing local recurrence, and another case of cross-metastatic site seeding combining with dynamic remoulding of subclonal mixtures in response to therapy. By ultra-deep sequencing end-stage blood, we detect both metastatic and primary tumour clones, even years after removal of the prostate. Analysis of mutations associated with metastasis reveals an enrichment of TP53 mutations, and additional sequencing of metastases from 19 patients demonstrates that acquisition of TP53 mutations is linked with the expansion of subclones with metastatic potential which we can detect in the blood.M.K.H.H. was supported by scholarships from the National Health and Medical Research Council, Australia, University of Melbourne (Melville Hughes Scholarship) and the Royal Australasian College of Surgeons (Foundation of Surgery Catherine Marie Enright Kelly and ANZ Journal of Surgery Research Scholarships). N.M.C. is the recipient of a David Bickart Clinician Research Fellowship from the Faculty of Medicine, Dentistry and Health Sciences at the University of Melbourne. M.K. is supported by the Carlo Vaccari Scholarship and APCR.This work is supported by NHMRC project grants 1024081 (N.M.C., J.S.P., A.J.C. and C.M.H.) and 1047581 (C.M.H., G.M., I.H., J.S.P., A.J.C., N.M.C.), as well as a federal grant from the Australian Department of Health and Aging to the Epworth Cancer Centre, Epworth Hospital (A.J.C., N.M.C., C.M.H.). In carrying out this research, we received funding and support from the Victoria Research Laboratory of National ICT Australia (NICTA) and the University of Melbourne, Australia. NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Programme. K.P. is supported by an Addenbrooke’s Charitable Trust Clinical Research Training Fellowship. We thank the Cambridge Urological Biorepository, the Human Research Tissue Bank and Biomedical Research Centre for tissue processing and storage. The Cambridge Urological Biorepostory is supported by the Cambridge Cancer Centre and Human Research Tissue Bank is supported by the NIHR Cambridge Biomedical Research Centre. Research performed at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy. We thank the Cambridge Institute Genomics Core and the Australian Genomics Research Facility for their support with this work. This work was supported by funding from Cancer Research UK C14303/A17197

    Probabilistic MRI Tractography of the Optic Radiation Using Constrained Spherical Deconvolution: A Feasibility Study

    Get PDF
    BACKGROUND AND PURPOSE: Imaging the optic radiation (OR) is of considerable interest in studying diseases affecting the visual pathway and for pre-surgical planning of temporal lobe resections. The purpose of this study was to investigate the clinical feasibility of using probabilistic diffusion tractography based on constrained spherical deconvolution (CSD) to image the optic radiation. It was hypothesized that CSD would provide improved tracking of the OR compared with the widely used ball-and-stick model. METHODS: Diffusion weighted MRI (30 directions) was performed on twenty patients with no known visual deficits. Tractography was performed using probabilistic algorithms based on fiber orientation distribution models of local white matter trajectories. The performance of these algorithms was evaluated by comparing computational times and receiver operating characteristic results, and by correlation of anatomical landmark distances to dissection estimates. RESULTS: The results showed that it was consistently feasible to reconstruct individual optic radiations from clinically practical (4.5 minute acquisition) diffusion weighted imaging data sets using CSD. Tractography based on the CSD model resulted in significantly shorter computational times, improved receiver operating characteristic results, and shorter Meyer's loop to temporal pole distances (in closer agreement with dissection studies) when compared to the ball-and-stick based algorithm. CONCLUSIONS: Accurate tractography of the optic radiation can be accomplished using diffusion MRI data collected within a clinically practical timeframe. CSD based tractography was faster, more accurate and had better correlation with known anatomical landmarks than ball-and-stick tractography

    Incidence of cerebral microbleeds in preclinical Alzheimer disease

    No full text
    OBJECTIVE: We sought to determine the incidence and associations of lobar microbleeds (LMBs) in a longitudinal cohort with (11)C-Pittsburgh compound B (PiB) PET imaging. METHODS: One hundred seventy-four participants from the observational Australian Imaging, Biomarkers and Lifestyle Study of Ageing (97 with normal cognition [NC], 37 with mild cognitive impairment [MCI], and 40 with Alzheimer disease [AD] dementia) were assessed at 3 time points over 3 years with 3-tesla susceptibility-weighted MRI and (11)C-PiB PET. MRIs were inspected for microbleeds, siderosis, infarction, and white matter hyperintensity severity, blind to clinical and PiB findings. Neocortical PiB standardized uptake value ratio, normalized to cerebellar cortex, was dichotomized as positive or negative (PiB+/-, standardized uptake value ratio >1.5). Annualized LMB incidence was calculated, and logistic regression was used to determine the association of incident LMBs with PiB, APOE ε4+ status, and cerebrovascular disease. RESULTS: LMBs were present in 18.6% of NC, 24.3% of MCI, and 40% of AD participants (p < 0.05 vs NC). LMB incidence was 0.2 ± 0.6 per year in NC participants, 0.2 ± 0.5 in MCI, and 0.7 ± 1.4 in AD (p < 0.03 vs NC) and was 6-fold higher in PiB+ than PiB-NC. Incident LMBs were associated with age, APOE ε4+, PiB+, and baseline LMBs. Incidence of multiple LMBs was also associated with lacunar infarction and white matter hyperintensity severity. CONCLUSIONS: Older age, baseline LMBs, higher β-amyloid burden, and concomitant cerebrovascular disease may all confer higher risk of incident LMBs. This should be considered when designing protocols for amyloid-modifying clinical trials

    Baseline white matter is associated with physical fitness change in preclinical Alzheimer's disease

    Get PDF
    White matter (WM) microstructure is a sensitive marker to distinguish individuals at risk of Alzheimer's disease. The association of objective physical fitness (PF) measures and WM microstructure has not been explored and mixed results reported with physical activity (PA). Longitudinal studies of WM with PA and PF measures have had limited investigation. This study explored the relationship between objective PF measures over 24-months with "normal-appearing" WM microstructure. Data acquired on magnetic resonance imaging was used to measure "normal-appearing" WM microstructure at baseline and 24-months. Clinical variables such as cognitive and blood-based measures were collected longitudinally. Also, as part of the randomized controlled trial of a PA, extensive measures of PA and fitness were obtained over the 24 months. Bilateral corticospinal tracts (CST) and the corpus callosum showed a significant association between PF performance over 24-months and baseline WM microstructural measures. There was no significant longitudinal effect of the intervention or PF performance over 24-months. Baseline WM microstructural measures were significantly associated with PF performance over 24-months in this cohort of participants with vascular risk factors and at risk of Alzheimer's disease with distinctive patterns for each PF test
    corecore