46 research outputs found

    Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis

    Get PDF
    Correction to Martin et al. available at: Genes & Development 30 (19): 2158 (http://genesdev.cshlp.org/content/31/9/953.full.pdf+html).Compaction of chromosomes is essential for accurate segregation of the genome duringmitosis. In vertebrates, two condensin complexes ensure timely chromosome condensation, sister chromatid disentanglement, and maintenance of mitotic chromosome structure. Here,we report that biallelic mutations inNCAPD2,NCAPH, orNCAPD3, encoding subunits of these complexes, cause microcephaly. In addition, hypomorphic Ncaph2 mice have significantly reduced brain size, with frequent anaphase chromatin bridge formation observed in apical neural progenitors during neurogenesis. Such DNA bridges also arise in condensin-deficient patient cells, where they are the consequence of failed sister chromatid disentanglement during chromosome compaction. This results in chromosome segregation errors, leading to micronucleus formation and increased aneuploidy in daughter cells. These findings establish “condensinopathies” as microcephalic disorders, with decatenation failure as an additional disease mechanism for microcephaly, implicating mitotic chromosome condensation as a key process ensuring mammalian cerebral cortex size.This work was supported by funding from the Medical Research Council, the Lister Institute for Preventative Medicine, and the European Research Council (ERC; 281847 to A.P.J.); a Biotechnology and Biological Sciences Research Council grant (BB/ K017632/1 to P.V); a Sir Henry Dale Fellowship (grant 102560/ Z/13/Z to A.J.W.); Medical Research Scotland (to L.S.B.); the Potentials Foundation (to C.A.W.); and the Indian Council of Medical Research (BMS 54/2/2013 to S.R.P). The Deciphering Developmental Disorders Study presents independent research commissioned by the Health Innovation Challenge Fund (grant no. HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant no. WT098051). The views expressed here are those of the authors and not necessarily those of the Wellcome Trust or the Department of Health. The study has UK Research Ethics Committee approval (10/H0305/83) granted by the Cambridge South Research Ethics Committee, and GEN/ 284/12 granted by the Republic of Ireland. We acknowledge the support of the National Institute for Health Research through the Comprehensive Clinical Research Network

    Factors affecting health-related quality of life in Thai children with thalassemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of the factors associated with health-related quality of life (HRQOL) among patients with thalassemia is essential in developing more suitable clinical, counseling, and social support programs to improve treatment outcomes of these patients. In light of the limited research in this area, this study aims to examine factors associated with HRQOL among children and adolescents with thalassemia in Thailand.</p> <p>Methods</p> <p>A cross-sectional survey was conducted in three selected hospitals in Thailand during June to November 2006. PedsQL™ 4.0 Generic Core Scale (Thai version) was used to assess HRQOL in 315 thalassemia patients between 5 and 18 years of age. Other related clinical characteristics of the patients were collected via medical record review.</p> <p>Results</p> <p>The mean (SD) of the total summary score was 76.67 (11.40), while the means (SD) for the Physical Health Summary score and Psychosocial Health Summary score were 78.24 (14.77) and 75.54 (12.76), respectively. The school functioning subscale scored the lowest, with a mean of 67.89 (SD = 15.92). The following factors significantly affected the HRQOL of the patients: age; age at onset of anemia and age at first transfusion; pre-transfusion hemoglobin (Hb) level; receiving a blood transfusion during the previous three months; and disease severity. In addition, iron chelation therapy had a significant negative effect on HRQOL in the school functioning subscale. In contrast, serum ferritin level, frequency of blood transfusions per year, and gender were not significantly related to HRQOL among these patients. The results from multivariate analysis also confirmed these findings.</p> <p>Conclusions</p> <p>To improve HRQOL of thalassemia patients, suitable programs aimed at providing psychosocial support and a link between the patient, school officials, the family and the physician are important, especially in terms of improving the school functioning score. The findings also confirmed the importance of maintaining a pre-transfusion Hb level of at least 9-10.5 g/dL. In addition, special care and attention should be given to patients with a severe condition, and those who are receiving subcutaneous iron chelation therapy.</p

    A computational model of invasive aspergillosis in the lung and the role of iron

    Full text link
    BACKGROUND: Invasive aspergillosis is a severe infection of immunocompromised hosts, caused by the inhalation of the spores of the ubiquitous environmental molds of the Aspergillus genus. The innate immune response in this infection entails a series of complex and inter-related interactions between multiple recruited and resident cell populations with each other and with the fungal cell; in particular, iron is critical for fungal growth. RESULTS: A computational model of invasive aspergillosis is presented here; the model can be used as a rational hypothesis-generating tool to investigate host responses to this infection. Using a combination of laboratory data and published literature, an in silico model of a section of lung tissue was generated that includes an alveolar duct, adjacent capillaries, and surrounding lung parenchyma. The three-dimensional agent-based model integrates temporal events in fungal cells, epithelial cells, monocytes, and neutrophils after inhalation of spores with cellular dynamics at the tissue level, comprising part of the innate immune response. Iron levels in the blood and tissue play a key role in the fungus’ ability to grow, and the model includes iron recruitment and consumption by the different types of cells included. Parameter sensitivity analysis suggests the model is robust with respect to unvalidated parameters, and thus is a viable tool for an in silico investigation of invasive aspergillosis. CONCLUSIONS: Using laboratory data from a mouse model of invasive aspergillosis in the context of transient neutropenia as validation, the model predicted qualitatively similar time course changes in fungal burden, monocyte and neutrophil populations, and tissue iron levels. This model lays the groundwork for a multi-scale dynamic mathematical model of the immune response to Aspergillus species. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0275-2) contains supplementary material, which is available to authorized users
    corecore