37,111 research outputs found
Modulational Instability in Bose-Einstein Condensates under Feshbach Resonance Management
We investigate the modulational instability of nonlinear Schr{\"o}dinger
equations with periodic variation of their coefficients. In particular, we
focus on the case of the recently proposed, experimentally realizable protocol
of Feshbach Resonance Management for Bose-Einstein condensates. We derive the
corresponding linear stability equation analytically and we show that it can be
reduced to a Kronig-Penney model, which allows the determination of the windows
of instability. The results are tested numerically in the absence, as well as
in the presence of the magnetic trapping potential
Conforming finite element methods for the clamped plate problem
Finite element methods for solving biharmonic boundary value problems are considered. The particular problem discussed is that of a clamped thin plate. This problem is reformulated in a weak, form in the Sobolev space Techniques for setting up conforming trial
Functions are utilized in a Galerkin technique to produce finite element solutions. The shortcomings of various trial function formulations are discussed, and a macro—element approach to local mesh refinement using rectangular elements is given
Stability of discrete dark solitons in nonlinear Schrodinger lattices
We obtain new results on the stability of discrete dark solitons bifurcating
from the anti-continuum limit of the discrete nonlinear Schrodinger equation,
following the analysis of our previous paper [Physica D 212, 1-19 (2005)]. We
derive a criterion for stability or instability of dark solitons from the
limiting configuration of the discrete dark soliton and confirm this criterion
numerically. We also develop detailed calculations of the relevant eigenvalues
for a number of prototypical configurations and obtain very good agreement of
asymptotic predictions with the numerical data.Comment: 11 pages, 5 figure
Local Popularity and Time in top-N Recommendation
Items popularity is a strong signal in recommendation algorithms. It strongly
affects collaborative filtering approaches and it has been proven to be a very
good baseline in terms of results accuracy. Even though we miss an actual
personalization, global popularity can be effectively used to recommend items
to users. In this paper we introduce the idea of a time-aware personalized
popularity in recommender systems by considering both items popularity among
neighbors and how it changes over time. An experimental evaluation shows a
highly competitive behavior of the proposed approach, compared to state of the
art model-based collaborative approaches, in terms of results accuracy.Comment: ECIR short paper, 7 page
Reconciling a significant hierarchical assembly of massive early-type galaxies at z<~1 with mass downsizing
Hierarchical models predict that massive early-type galaxies (mETGs) are the
latest systems to be in place into the cosmic scenario (at z<~0.5), conflicting
with the observational phenomenon of galaxy mass downsizing, which poses that
the most massive galaxies have been in place earlier that their lower-mass
counterparts (since z~0.7). We have developed a semi-analytical model to test
the feasibility of the major-merger origin hypothesis for mETGs, just
accounting for the effects on galaxy evolution of the major mergers strictly
reported by observations. The most striking model prediction is that very few
present-day mETGs have been really in place since z~1, because ~90% of the
mETGs existing at z~1 are going to be involved in a major merger between z~1
and the present. Accounting for this, the model derives an assembly redshift
for mETGs in good agreement with hierarchical expectations, reproducing
observational mass downsizing trends at the same time.Comment: 2 pages, 1 figure, Proceedings of Symposium 2 of JENAM 2010,
"Environment and the Formation of Galaxies: 30 years later", ed. I. Ferreras
and A. Pasquali, Astrophysics & Space Science Proceedings, Springe
Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas
The bile duct system and pancreas show many similarities due to their anatomical proximity and common embryological origin. Consequently, preneoplastic and neoplastic lesions of the bile duct and pancreas share analogies in terms of
molecular, histological and pathophysiological features. Intraepithelial neoplasms are reported in biliary tract, as biliary intraepithelial neoplasm (BilIN), and in pancreas, as pancreatic intraepithelial neoplasm (PanIN). Both can evolve
to invasive carcinomas, respectively cholangiocarcinoma (CCA) and pancreatic ductal adenocarcinoma (PDAC). Intraductal papillary neoplasms arise in biliary tract and pancreas. Intraductal papillary neoplasm of the biliary tract (IPNB)
share common histologic and phenotypic features such as pancreatobiliary, gastric, intestinal and oncocytic types, and biological behavior with the pancreatic counterpart, the intraductal papillary mucinous neoplasm of the pancreas (IPMN). All these neoplastic lesions exhibit similar immunohistochemical phenotypes, suggesting a common carcinogenic process.
Indeed, CCA and PDAC display similar clinic-pathological features as growth pattern, poor response to conventional chemotherapy and radiotherapy and, as a consequence, an unfavorable prognosis. The objective of this review is to discuss similarities and differences between the neoplastic lesions of the pancreas and biliary tract with potential implications on a common origin from similar stem/progenitor cells
On the Transformation Capability of Feasible Mechanisms for Programmable Matter
We study theoretical models of programmable matter systems, consisting of n spherical modules kept together by magnetic or electrostatic forces and able to perform two minimal mechanical operations (movements): rotate and/or slide. The goal is for an initial shape A to transform to some target shape B by a sequence of movements. Most of the paper focuses on transformability (feasibility) questions. When only rotation is available, we prove that deciding whether two given shapes can transform to each other, is in P. Under the additional restriction of maintaining global connectivity, we prove inclusion in PSPACE and explore minimum seeds that can make otherwise infeasible transformations feasible. Allowing both rotations and slidings yields universality: any two connected shapes of the same order can be transformed to each other without breaking connectivity, in O(n2) sequential and O(n) parallel time (both optimal). We finally provide a type of distributed transformation
Aetiological role of viral and bacterial infections in acute adult lower respiratory tract infection (LRTI) in primary care.
BACKGROUND: Lower respiratory tract infections (LRTI) are a common reason for consulting general practitioners (GPs). In most cases the aetiology is unknown, yet most result in an antibiotic prescription. The aetiology of LRTI was investigated in a prospective controlled study. METHODS: Eighty adults presenting to GPs with acute LRTI were recruited together with 49 controls over 12 months. Throat swabs, nasal aspirates (patients and controls), and sputum (patients) were obtained and polymerase chain reaction (PCR) and reverse transcriptase polymerase chain reaction (RT-PCR) assays were used to detect Streptococcus pneumoniae, Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila, influenza viruses (AH1, AH3 and B), parainfluenza viruses 1-3, coronaviruses, respiratory syncytial virus, adenoviruses, rhinoviruses, and enteroviruses. Standard sputum bacteriology was also performed. Outcome was recorded at a follow up visit. RESULTS: Potential pathogens were identified in 55 patients with LRTI (69%) and seven controls (14%; p<0.0001). The identification rate was 63% (viruses) and 26% (bacteria) for patients and 12% (p<0.0001) and 6% (p = 0.013), respectively, for controls. The most common organisms identified in the patients were rhinoviruses (33%), influenza viruses (24%), and Streptococcus pneumoniae (19%) compared with 2% (p<0.001), 6% (p = 0.013), and 4% (p = 0.034), respectively, in controls. Multiple pathogens were identified in 18 of the 80 LRTI patients (22.5%) and in two of the 49 controls (4%; p = 0.011). Atypical organisms were rarely identified. Cases with bacterial aetiology were clinically indistinguishable from those with viral aetiology. CONCLUSION: Patients presenting to GPs with acute adult LRTI predominantly have a viral illness which is most commonly caused by rhinoviruses and influenza viruses
A SAT-based System for Consistent Query Answering
An inconsistent database is a database that violates one or more integrity
constraints, such as functional dependencies. Consistent Query Answering is a
rigorous and principled approach to the semantics of queries posed against
inconsistent databases. The consistent answers to a query on an inconsistent
database is the intersection of the answers to the query on every repair, i.e.,
on every consistent database that differs from the given inconsistent one in a
minimal way. Computing the consistent answers of a fixed conjunctive query on a
given inconsistent database can be a coNP-hard problem, even though every fixed
conjunctive query is efficiently computable on a given consistent database.
We designed, implemented, and evaluated CAvSAT, a SAT-based system for
consistent query answering. CAvSAT leverages a set of natural reductions from
the complement of consistent query answering to SAT and to Weighted MaxSAT. The
system is capable of handling unions of conjunctive queries and arbitrary
denial constraints, which include functional dependencies as a special case. We
report results from experiments evaluating CAvSAT on both synthetic and
real-world databases. These results provide evidence that a SAT-based approach
can give rise to a comprehensive and scalable system for consistent query
answering.Comment: 25 pages including appendix, to appear in the 22nd International
Conference on Theory and Applications of Satisfiability Testin
- …