18 research outputs found

    Pharmacological characterization of calcium currents and synaptic transmission between thalamic neurons in vitro

    Get PDF
    We recorded from pairs of cultured, synaptically connected thalamic neurons. Evoked excitatory postsynaptic currents (EPSCs) reversed at +17 mV and were blocked reversibly by 1 mM kynurenic acid, a glutamate receptor antagonist. NMDA and non-NMDA receptors mediated excitatory post-synaptic responses, as shown by selective block of EPSC components with 50 microM (+/-)-2-amino-5-phosphonopentanoic acid and 10 microM 6,7-dinitroquinoxaline-2,3-dione, respectively. Inhibitory postsynaptic responses were evoked less frequently and were blocked by the GABAA receptor antagonist (-)-bicuculline methochloride. The pharmacological profiles of whole-cell calcium currents and evoked EPSCs were compared. With 50 microM cadmium chloride (Cd), whole-cell low voltage-activated (LVA) calcium currents were reduced in amplitude and high voltage-activated (HVA) calcium currents and excitatory synaptic transmission were completely blocked. This suggests that the residual calcium influx through LVA channels into the presynaptic terminal does not suffice to trigger transmitter release. A saturating concentration of omega-conotoxin GVIA (omega-CgTx) (2.5 microM) blocked one-third of whole-cell HVA calcium currents and evoked EPSCs. The dihydropyridine nifedipine (50 microM) reversibly reduced whole-cell HVA calcium currents in a voltage-dependent manner but not excitatory synaptic transmission. Cd and omega-CgTx did not alter amplitude distributions of miniature EPSCs, demonstrating that the inhibition of synaptic transmission was due to block of presynaptic calcium channels. We conclude that excitatory glutamatergic transmission in thalamic neurons in vitro was mediated mainly by HVA calcium currents, which were insensitive to omega-CgTx and nifedipine

    Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes.

    Get PDF
    Adult neurogenesis is regulated by the neurogenic niche, through mechanisms that remain poorly defined. Here, we investigated whether niche-constituting astrocytes influence the maturation of adult-born hippocampal neurons using two independent transgenic approaches to block vesicular release from astrocytes. In these models, adult-born neurons but not mature neurons showed reduced glutamatergic synaptic input and dendritic spine density that was accompanied with lower functional integration and cell survival. By taking advantage of the mosaic expression of transgenes in astrocytes, we found that spine density was reduced exclusively in segments intersecting blocked astrocytes, revealing an extrinsic, local control of spine formation. Defects in NMDA receptor (NMDAR)-mediated synaptic transmission and dendrite maturation were partially restored by exogenous D-serine, whose extracellular level was decreased in transgenic models. Together, these results reveal a critical role for adult astrocytes in local dendritic spine maturation, which is necessary for the NMDAR-dependent functional integration of newborn neurons

    Verfahren zur Isolierung von Neuronen

    No full text

    New views on synapse-glia interactions

    No full text
    Although glial cells ensheath synapses throughout the nervous system, the functional consequences of this relationship are uncertain. Recent studies suggest that glial cells may promote the formation of synapses and help to maintain their function by providing nerve terminals with energy substrates and glutamate precursors

    Synaptic efficacy enhanced by glial cells in vitro

    No full text
    In the developing nervous system, glial cells guide axons to their target areas, but it is unknown whether they help neurons to establish functional synaptic connections. The role of glial cells in synapse formation and function was studied in cultures of purified neurons from the rat central nervous system. In glia-free cultures, retinal ganglion cells formed synapses with normal ultrastructure but displayed little spontaneous synaptic activity and high failure rates in evoked synaptic transmission. In cocultures with neuroglia, the frequency and amplitude of spontaneous postsynaptic currents were potentiated by 70-fold and 5-fold, respectively, and fewer transmission failures occurred. Glial cells increased the action potential-independent quantal release by 12-fold without affecting neuronal survival. Thus, developing neurons in culture form inefficient synapses that require glial signals to become fully functional
    corecore