330 research outputs found
Decreased T cell reactivity to Epstein–Barr virus infected lymphoblastoid cell lines in multiple sclerosis
Objective: To investigate T cell and antibody immunity to Epstein-Barr virus (EBV) in multiple sclerosis (MS)
Direct Substrate Delivery into Mitochondrial-Fission Deficient Pancreatic Islets Rescues Insulin Secretion
In pancreatic beta cells, mitochondrial bioenergetics control glucose-stimulated insulin secretion (GSIS). Mitochondrial dynamics are generally associated with quality control, maintaining the functionality of bioenergetics. By acute pharmacological inhibition of mitochondrial fission protein Drp1, we here demonstrate that mitochondrial fission is necessary for GSIS in mouse and human islets. We confirm that genetic silencing of Drp1 increases mitochondrial proton leak in MIN6 cells. However, our comprehensive analysis of pancreatic islet bioenergetics reveals that Drp1 does not control insulin secretion via its effect on proton leak but instead via modulation of glucose-fuelled respiration. Notably, pyruvate fully rescues the impaired insulin secretion of fission-deficient beta cells, demonstrating that defective mitochondrial dynamics solely impact substrate supply upstream of oxidative phosphorylation. The present findings provide novel insights in how mitochondrial dysfunction may cause pancreatic beta cell failure. In addition, the results will stimulate new thinking in the intersecting fields of mitochondrial dynamics and bioenergetics, as treatment of defective dynamics in mitochondrial diseases appears to be possible by improving metabolism upstream of mitochondria
Biogenesis of the inner membrane complex is dependent on vesicular transport by the alveolate specific GTPase Rab11B
Apicomplexan parasites belong to a recently recognised group of protozoa referred to as Alveolata. These protists contain membranous sacs (alveoli) beneath the plasma membrane, termed the Inner Membrane Complex (IMC) in the case of Apicomplexa. During parasite replication the IMC is formed de novo within the mother cell in a process described as internal budding. We hypothesized that an alveolate specific factor is involved in the specific transport of vesicles from the Golgi to the IMC and identified the small GTPase Rab11B as an alveolate specific Rab-GTPase that localises to the growing end of the IMC during replication of Toxoplasma gondii. Conditional interference with Rab11B function leads to a profound defect in IMC biogenesis, indicating that Rab11B is required for the transport of Golgi derived vesicles to the nascent IMC of the daughter cell. Curiously, a block in IMC biogenesis did not affect formation of sub-pellicular microtubules, indicating that IMC biogenesis and formation of sub-pellicular microtubules is not mechanistically linked. We propose a model where Rab11B specifically transports vesicles derived from the Golgi to the immature IMC of the growing daughter parasites
The GOAT-Ghrelin System Is Not Essential for Hypoglycemia Prevention during Prolonged Calorie Restriction
Ghrelin acylation by ghrelin O-acyltransferase (GOAT) has recently been reported to be essential for the prevention of hypoglycemia during prolonged negative energy balance. Using a unique set of four different genetic loss-of-function models for the GOAT/ghrelin/growth hormone secretagogue receptor (GHSR) system, we thoroughly tested the hypothesis that lack-of-ghrelin activation or signaling would lead to hypoglycemia during caloric deprivation.
Male and female knockout (KO) mice for GOAT, ghrelin, GHSR, or both ghrelin and GHSR (dKO) were subjected to prolonged calorie restriction (40% of ad libitum chow intake). Body weight, fat mass, and glucose levels were recorded daily and compared to wildtype (WT) controls. Forty-eight hour blood glucose profiles were generated for each individual mouse when 2% or less body fat mass was reached. Blood samples were obtained for analysis of circulating levels of acyl- and desacyl-ghrelin, IGF-1, and insulin.
Chronic calorie restriction progressively decreased body weight and body fat mass in all mice regardless of genotype. When fat mass was depleted to 2% or less of body weight for 2 consecutive days, random hypoglycemic events occurred in some mice across all genotypes. There was no increase in the incidence of hypoglycemia in any of the four loss-of-function models for ghrelin signaling including GOAT KO mice. Furthermore, no differences in insulin or IGF-1 levels were observed between genotypes.
The endogenous GOAT-ghrelin-GHSR system is not essential for the maintenance of euglycemia during prolonged calorie restriction
Dusp8 affects hippocampal size and behavior in mice and humans
Dual-specificity phosphatase 8 (Dusp8) acts as physiological inhibitor for the MAPKs Jnk, Erk and p38 which are involved in regulating multiple CNS processes. While Dusp8 expression levels are high in limbic areas such as the hippocampus, the functional role of Dusp8 in hippocampus morphology, MAPK-signaling, neurogenesis and apoptosis as well as in behavior are still unclear. It is of particular interest whether human carriers of a DUSP8 allelic variant show similar hippocampal alterations to mice. Addressing these questions using Dusp8WT and KO mouse littermates, we found that KOs suffered from mildly impaired spatial learning, increased locomotor activity and elevated anxiety. Cell proliferation, apoptosis and p38 and Jnk phosphorylation were unaffected, but phospho-Erk levels were higher in hippocampi of the KOs. Consistent with a decreased hippocampus size in Dusp8 KO mice, we found reduced volumes of the hippocampal subregions subiculum and CA4 in humans carrying the DUSP8 allelic variant SNP rs2334499:C > T. Overall, aberrations in morphology and behavior in Dusp8 KO mice and a decrease in hippocampal volume of SNP rs2334499:C > T carriers point to a novel, translationally relevant role of Dusp8 in hippocampus function that warrants further studies on the role of Dusp8 within the limbic network
Cardiovascular mortality and exposure to extremely low frequency magnetic fields: a cohort study of Swiss railway workers
<p>Abstract</p> <p>Background</p> <p>Exposure to intermittent magnetic fields of 16 Hz has been shown to reduce heart rate variability, and decreased heart rate variability predicts cardiovascular mortality. We examined mortality from cardiovascular causes in railway workers exposed to varying degrees to intermittent 16.7 Hz magnetic fields.</p> <p>Methods</p> <p>We studied a cohort of 20,141 Swiss railway employees between 1972 and 2002, including highly exposed train drivers (median lifetime exposure 120.5 μT-years), and less or little exposed shunting yard engineers (42.1 μT-years), train attendants (13.3 μT-years) and station masters (5.7 μT-years). During 464,129 person-years of follow up, 5,413 deaths were recorded and 3,594 deaths were attributed to cardio-vascular diseases. We analyzed data using Cox proportional hazards models.</p> <p>Results</p> <p>For all cardiovascular mortality the hazard ratio compared to station masters was 0.99 (95%CI: 0.91, 1.08) in train drivers, 1.13 (95%CI: 0.98, 1.30) in shunting yard engineers, and 1.09 (95%CI: 1.00, 1.19) in train attendants.Corresponding hazard ratios for arrhythmia related deaths were 1.04 (95%CI: 0.68, 1.59), 0.58 (95%CI: 0.24, 1.37) and 1.30 (95%CI: 0.87, 1.93) and for acute myocardial infarction 1.00 (95%CI: 0.73, 1.36), 1.56 (95%CI: 1.04, 2.32), and 1.14 (95%CI: 0.85, 1.53). The hazard ratio for arrhythmia related deaths per 100 μT-years of cumulative exposure was 0.94 (95%CI: 0.71, 1.24) and 0.91 (95%CI: 0.75, 1.11) for acute myocardial infarction.</p> <p>Conclusion</p> <p>This study provides evidence against an association between long-term occupational exposure to intermittent 16.7 Hz magnetic fields and cardiovascular mortality.</p
The role of clathrin in post-golgi trafficking in toxoplasma gondii
Apicomplexan parasites are single eukaryotic cells with a highly polarised secretory system that contains unique secretory organelles (micronemes and rhoptries) that are required for host cell invasion. In contrast, the role of the endosomal system is poorly understood in these parasites. With many typical endocytic factors missing, we speculated that endocytosis depends exclusively on a clathrin-mediated mechanism. Intriguingly, in Toxoplasma gondii we were only able to observe the endogenous clathrin heavy chain 1 (CHC1) at the Golgi, but not at the parasite surface. For the functional characterisation of Toxoplasma gondii CHC1 we generated parasite mutants conditionally expressing the dominant negative clathrin Hub fragment and demonstrate that CHC1 is essential for vesicle formation at the trans-Golgi network. Consequently, the functional ablation of CHC1 results in Golgi aberrations, a block in the biogenesis of the unique secretory microneme and rhoptry organelles, and of the pellicle. However, we found no morphological evidence for clathrin mediating endocytosis in these parasites and speculate that they remodelled their vesicular trafficking system to adapt to an intracellular lifestyle
Decreased CD8+ T cell response to Epstein-Barr virus infected B cells in multiple sclerosis is not due to decreased HLA class I expression on B cells or monocytes
Background: Patients with multiple sclerosis (MS) have a decreased frequency of CD8(+) T cells reactive to their own Epstein-Barr virus (EBV) infected B cells. We have proposed that this might predispose to the development of MS by allowing EBV-infected autoreactive B cells to accumulate in the central nervous system. The decreased CD8(+) T cell response to EBV results from a general CD8(+) T cell deficiency and also a decreased proportion of EBV-specific T cells within the total CD8(+) T cell population. Because decreased HLA class I expression on monocytes and B cells has been reported in MS and could influence the generation and effector function of EBV-specific CD8(+) T cells, the present study was undertaken to measure the expression of HLA molecules on B cells and monocytes in patients with MS
- …