14,601 research outputs found

    hp-adaptive discontinuous Galerkin solver for elliptic equations in numerical relativity

    No full text
    A considerable amount of attention has been given to discontinuous Galerkin methods for hyperbolic problems in numerical relativity, showing potential advantages of the methods in dealing with hydrodynamical shocks and other discontinuities. This paper investigates discontinuous Galerkin methods for the solution of elliptic problems in numerical relativity. We present a novel hp-adaptive numerical scheme for curvilinear and non-conforming meshes. It uses a multigrid preconditioner with a Chebyshev or Schwarz smoother to create a very scalable discontinuous Galerkin code on generic domains. The code employs compactification to move the outer boundary near spatial infinity. We explore the properties of the code on some test problems, including one mimicking Neutron stars with phase transitions. We also apply it to construct initial data for two or three black holes

    An evaluation framework for stereo-based driver assistance

    Get PDF
    This is the post-print version of the Article - Copyright @ 2012 Springer VerlagThe accuracy of stereo algorithms or optical flow methods is commonly assessed by comparing the results against the Middlebury database. However, equivalent data for automotive or robotics applications rarely exist as they are difficult to obtain. As our main contribution, we introduce an evaluation framework tailored for stereo-based driver assistance able to deliver excellent performance measures while circumventing manual label effort. Within this framework one can combine several ways of ground-truthing, different comparison metrics, and use large image databases. Using our framework we show examples on several types of ground truthing techniques: implicit ground truthing (e.g. sequence recorded without a crash occurred), robotic vehicles with high precision sensors, and to a small extent, manual labeling. To show the effectiveness of our evaluation framework we compare three different stereo algorithms on pixel and object level. In more detail we evaluate an intermediate representation called the Stixel World. Besides evaluating the accuracy of the Stixels, we investigate the completeness (equivalent to the detection rate) of the StixelWorld vs. the number of phantom Stixels. Among many findings, using this framework enables us to reduce the number of phantom Stixels by a factor of three compared to the base parametrization. This base parametrization has already been optimized by test driving vehicles for distances exceeding 10000 km

    Independently contacted two-dimensional electron systems in double quantum wells

    Get PDF
    A new technique for creating independent ohmic contacts to closely spaced two-dimensional electron systems in double quantum well (DQW) structures is described. Without use of shallow diffusion or precisely controlled etching methods, the present technique results in low-resistance contacts which can be electrostatically switched between the two-conducting layers. The method is demonstrated with a DQW consisting of two 200 Å GaAs quantum wells separated by a 175 Å AlGaAs barrier. A wide variety of experiments on Coulomb and tunnel-coupled 2D electron systems is now accessible

    Ultraslow Electron Spin Dynamics in GaAs Quantum Wells Probed by Optically Pumped NMR

    Full text link
    Optically pumped nuclear magnetic resonance (OPNMR) measurements were performed in two different electron-doped multiple quantum well samples near the fractional quantum Hall effect ground state nu=1/3. Below 0.5K, the spectra provide evidence that spin-reversed charged excitations of the nu=1/3 ground state are localized over the NMR time scale of ~40 microseconds. Furthermore, by varying NMR pulse parameters, the electron spin temperature (as measured by the Knight shift) could be driven above the lattice temperature, which shows that the value of the electron spin-lattice relaxation time lies between 100 microseconds and 500 milliseconds at nu=1/3.Comment: 6 pages (REVTEX), 6 eps figures embedded in text; published version; minor changes to match published versio

    Optimizing crop loading of apples and pears - results 2004-2006 (foliar fertilizers, thinning)

    Get PDF
    Main topics of the research-project FuE 03OE088 of “Bundesprogramm Ökologischer Landbau” (30.04.2004-31.12.2006) were the testing of foliar fertilizers in organic apples and pears, optimizing lime sulphur for blossom thinning, looking for alternatives to lime sulphur for blossom thinning and looking at different combinations of thinning measures. Only the results of testing foliar fertilizers (carried out by KoGa Ahrweiler and OVB/ÖON Jork) and combinations of thinning measures (carried out by LVWO Weinsberg) are described in this article. Over three years only a small increase in yield was evaluated for the fertilizers Aminosol PS and Wuxal Ascofol (site Ahrweiler, apple variety ‘Elstar’). In Jork (apple variety ‘Holsteiner Cox’) yield could only be judged in 2005 and 2006. Wuxal Ascofol showed some advantage in comparison to the control. At pear variety ‘Conference’ no clear tendencies could be seen, the control had the highest yield. In 2005 the fruitsetting of ‘Conference’ was very low because of bad conditions during blossom

    Quantum wells with atomically smooth interfaces

    Full text link
    By a cleaved-edge overgrowth method with molecular beam epitaxy and a (110) growth-interrupt-anneal, we have fabricated a GaAs quantum well exactly 30 monolayers thick bounded by atomically smooth AlGaAs hetero-interfaces without atomic roughness. Micro-photoluminescence imaging of this quantum well indeed shows spatially uniform and spectrally sharp emission over areas of several tens of μ\mum in extent. By adding a fractional GaAs monolayer to our quantum well we are able to study the details of the atomic step-edge kinetics responsible for flat interface formation.Comment: 4 pages, 3 figures, revTex

    Single electron capacitance spectroscopy of vertical quantum dots using a single electron transistor

    Full text link
    We have incorporated an aluminum single electron transistor (SET) directly on top of a vertical quantum dot, enabling the use of the SET as an electrometer that is extremely responsive to the motion of charge into and out of the dot. Charge induced on the SET central island from single electron additions to the dot modulates the SET output, and we describe two methods for demodulation that permit quantitative extraction of the quantum dot capacitance signal. The two methods produce closely similar results for the determined single electron capacitance peaks.Comment: Submitted to Applied Physics Letters (reformatted to fit correctly on a page
    corecore