8,823 research outputs found

    Enhancement of Coherent X ray Diffraction from Nanocrystals by Introduction of X ray Optics

    Get PDF
    Coherent X-ray Diffraction is applied to investigate the structure of individual nanocrystalline silver particles in the 100nm size range. In order to enhance the available signal, Kirkpatrick-Baez focusing optics have been introduced in the 34-ID-C beamline at APS. Concerns about the preservation of coherence under these circumstances are addressed through experiment and by calculations

    Does Efficient Irrigation Technology Lead to Reduced Groundwater Extraction?: Empirical Evidence

    Get PDF
    Policies that encourage the use of more efficiency irrigation technology are often viewed as effective, politically feasible methods to reduce the consumptive use of water for agricultural production. Despite their widespread use, these policies have not been subject to empirical evaluation. In this article, we evaluate the effect on groundwater extraction of a widespread conversion from traditional center pivot irrigation systems to higher efficiency dropped-nozzle center pivot systems that has occurred in western Kansas. State and national cost-share programs subsidized the conversion. We find that the programs have not had the intended effect; the shift to more efficient irrigation technology has not decreased the amount of water applied to a given crop, and has actually increased groundwater extraction through changing cropping patterns.irrigation efficiency, groundwater management, irrigation technology, Environmental Economics and Policy, Land Economics/Use,

    Critical properties of loop percolation models with optimization constraints

    Full text link
    We study loop percolation models in two and in three space dimensions, in which configurations of occupied bonds are forced to form closed loop. We show that the uncorrelated occupation of elementary plaquettes of the square and the simple cubic lattice by elementary loops leads to a percolation transition that is in the same universality class as the conventional bond percolation. In contrast to this an optimization constraint for the loop configurations, which then have to minimize a particular generic energy function, leads to a percolation transition that constitutes a new universality class, for which we report the critical exponents. Implication for the physics of solid-on-solid and vortex glass models are discussed.Comment: 8 pages, 8 figure

    Assessing the accuracy of δ<sup>18<\sup>O<sub>sw<?sub> estimates from corals: lessons from simple Monte Carlo simulations

    Get PDF
    EGU2008-A-04391 Paired measurements of δ18O and Sr/Ca in coral aragonite are routinely used for deriving estimates of δ18Osw and, by extension, sea surface salinity variations over the past centuries. However, in practice, the accuracy (or the error) of these estimates is often difficult to assess. Here, we use simulated proxy data and Monte-Carlo simulations to investigate the accuracy of δ18Osw estimates from paired coral δ18O and Sr/Ca measurements. First, we estimate expected values of coral Sr/Ca and δ18O from instrumental or reanalysis data of sea surface temperature (SST) and sea surface salinity (SSS). We then add the typical analytical errors onto the expected Sr/Ca (δ18O) data as random numbers and compute δ18Osw+error from the noisy proxy data for a 1000 sample Monte Carlo. From this simple Monte Carlo simulation, the range of correlation coefficients between δ18Osw+error and expected δ18Osw is estimated. As expected, we find that this range mainly depends on the magnitude of the actual SSS variations at a given site, as well as on the slope of the δ18Osw-SSS relationship. A comparison with real coral-based δ18Osw reconstructions from multiple sites indicates that correlations between reconstructed δ18Osw and instrumental SSS fall within the range of correlation coefficients predicted based on our Monte-Carlo simulation. Thus, our simple simulation exercise may help to assess the feasibility of δ18Osw and salinity reconstructions from corals in different climatic settings, provided that (i) some instrumental data of δ18Osw and/or SSS is available, and (ii) the slope of the δ18Osw-SSS relationship is known

    Phase Diagrams for the ν\nu = 1/2 Fractional Quantum Hall Effect in Electron Systems Confined to Symmetric, Wide GaAs Quantum Wells

    Full text link
    We report an experimental investigation of fractional quantum Hall effect (FQHE) at the even-denominator Landau level filling factor ν\nu = 1/2 in very high quality wide GaAs quantum wells, and at very high magnetic fields up to 45 T. The quasi-two-dimensional electron systems we study are confined to GaAs quantum wells with widths WW ranging from 41 to 96 nm and have variable densities in the range of ≃4×1011\simeq 4 \times 10^{11} to ≃4×1010\simeq 4 \times 10^{10} cm−2^{-2}. We present several experimental phase diagrams for the stability of the ν=1/2\nu=1/2 FQHE in these quantum wells. In general, for a given WW, the 1/2 FQHE is stable in a limited range of intermediate densities where it has a bilayer-like charge distribution; it makes a transition to a compressible phase at low densities and to an insulating phase at high densities. The densities at which the ν=1/2\nu=1/2 FQHE is stable are larger for narrower quantum wells. Moreover, even a slight charge distribution asymmetry destabilizes the ν=1/2\nu=1/2 FQHE and turns the electron system into a compressible state. We also present a plot of the symmetric-to-antisymmetric subband separation (ΔSAS\Delta_{SAS}), which characterizes the inter-layer tunneling, vs density for various WW. This plot reveals that ΔSAS\Delta_{SAS} at the boundary between the compressible and FQHE phases increases \textit{linearly} with density for all the samples. Finally, we summarize the experimental data in a diagram that takes into account the relative strengths of the inter-layer and intra-layer Coulomb interactions and ΔSAS\Delta_{SAS}. We conclude that, consistent with the conclusions of some of the previous studies, the ν=1/2\nu=1/2 FQHE observed in wide GaAs quantum wells with symmetric charge distribution is stabilized by a delicate balance between the inter-layer and intra-layer interactions, and is very likely described by a two-component (Ψ311\Psi_{311}) state.Comment: Accepted for publication in Phys. Rev.

    Foot and mouth disease in Zambia: Spatial and temporal distributions of outbreaks, assessment of clusters and implications for control

    Get PDF
    Zambia has been experiencing low livestock productivity as well as trade restrictions owing to the occurrence of foot and mouth disease (FMD), but little is known about the epidemiology of the disease in these endemic settings. The fundamental questions relate to the spatio-temporal distribution of FMD cases and what determines their occurrence. A retrospective review of FMD cases in Zambia from 1981 to 2012 was conducted using geographical information systems and the SaTScan software package. Information was collected from peer-reviewed journal articles, conference proceedings, laboratory reports, unpublished scientific reports and grey literature. A space–time permutation probability model using a varying time window of one year was used to scan for areas with high infection rates. The spatial scan statistic detected a significant purely spatial cluster around the Mbala–Isoka area between 2009 and 2012, with secondary clusters in Sesheke–Kazungula in 2007 and 2008, the Kafue flats in 2004 and 2005 and Livingstone in 2012. This study provides evidence of the existence of statistically significant FMD clusters and an increase in occurrence in Zambia between 2004 and 2012. The identified clusters agree with areas known to be at high risk of FMD. The FMD virus transmission dynamics and the heterogeneous variability in risk within these locations may need further investigation

    Interaction-induced Interlayer Charge Transfer in the Extreme Quantum Limit

    Full text link
    An interacting bilayer electron system provides an extended platform to study electron-electron interaction beyond single layers. We report here experiments demonstrating that the layer densities of an asymmetric bilayer electron system oscillate as a function of perpendicular magnetic field that quantizes the energy levels. At intermediate fields, this interlayer charge transfer can be well explained by the alignment of the Landau levels in the two layers. At the highest fields where both layers reach the extreme quantum limit, however, there is an anomalous, enhanced charge transfer to the majority layer. Surprisingly, when the minority layer becomes extremely dilute, this charge transfer slows down as the electrons in the minority layer condense into a Wigner crystal. Furthermore, by examining the quantum capacitance of the dilute layer at high fields, the screening induced by the composite fermions in an adjacent layer is unveiled. The results highlight the influence of strong interaction in interlayer charge transfer in the regime of very high fields and low Landau level filling factors.Comment: Please see the formal version on PR
    • …
    corecore