12,306 research outputs found

    Factorizing twists and R-matrices for representations of the quantum affine algebra U_q(\hat sl_2)

    Full text link
    We calculate factorizing twists in evaluation representations of the quantum affine algebra U_q(\hat sl_2). From the factorizing twists we derive a representation independent expression of the R-matrices of U_q(\hat sl_2). Comparing with the corresponding quantities for the Yangian Y(sl_2), it is shown that the U_q(\hat sl_2) results can be obtained by `replacing numbers by q-numbers'. Conversely, the limit q -> 1 exists in representations of U_q(\hat sl_2) and both the factorizing twists and the R-matrices of the Yangian Y(sl_2) are recovered in this limit.Comment: 19 pages, LaTe

    A spin foam model for pure gauge theory coupled to quantum gravity

    Get PDF
    We propose a spin foam model for pure gauge fields coupled to Riemannian quantum gravity in four dimensions. The model is formulated for the triangulation of a four-manifold which is given merely combinatorially. The Riemannian Barrett--Crane model provides the gravity sector of our model and dynamically assigns geometric data to the given combinatorial triangulation. The gauge theory sector is a lattice gauge theory living on the same triangulation and obtains from the gravity sector the geometric information which is required to calculate the Yang--Mills action. The model is designed so that one obtains a continuum approximation of the gauge theory sector at an effective level, similarly to the continuum limit of lattice gauge theory, when the typical length scale of gravity is much smaller than the Yang--Mills scale.Comment: 18 pages, LaTeX, 1 figure, v2: details clarified, references adde

    Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime

    Get PDF
    Simulations of neutron star-black hole (NSBH) binaries generally consider black holes with masses in the range (510)M(5-10)M_\odot, where we expect to find most stellar mass black holes. The existence of lower mass black holes, however, cannot be theoretically ruled out. Low-mass black holes in binary systems with a neutron star companion could mimic neutron star-neutron (NSNS) binaries, as they power similar gravitational wave (GW) and electromagnetic (EM) signals. To understand the differences and similarities between NSNS mergers and low-mass NSBH mergers, numerical simulations are required. Here, we perform a set of simulations of low-mass NSBH mergers, including systems compatible with GW170817. Our simulations use a composition and temperature dependent equation of state (DD2) and approximate neutrino transport, but no magnetic fields. We find that low-mass NSBH mergers produce remnant disks significantly less massive than previously expected, and consistent with the post-merger outflow mass inferred from GW170817 for moderately asymmetric mass ratio. The dynamical ejecta produced by systems compatible with GW170817 is negligible except if the mass ratio and black hole spin are at the edge of the allowed parameter space. That dynamical ejecta is cold, neutron-rich, and surprisingly slow for ejecta produced during the tidal disruption of a neutron star : v(0.10.15)cv\sim (0.1-0.15)c. We also find that the final mass of the remnant black hole is consistent with existing analytical predictions, while the final spin of that black hole is noticeably larger than expected -- up to χBH=0.84\chi_{\rm BH}=0.84 for our equal mass case

    AC Magnetotransport in Reentrant Insulating Phases of Two-dimensional Electrons near 1/5 and 1/3 Landau fillings

    Full text link
    We have measured high frequency magnetotransport of a high quality two-dimensional electron system (2DES) near the reentrant insulating phase (RIP) at Landau fillings (ν\nu) between 1/5 and 2/9. The magneto\textit{conductivity} in the RIP has resonant behavior around 150 MHz, showing a \textit{peak} at ν\nu\sim0.21. Our data support the interpretation of the RIP as due to some pinned electron solid. We have also investigated a narrowly confined 2DES recently found to have a RIP at 1/3<<ν\nu<<1/2 and we have revealed features, not seen in DC transport, that suggest some intriguing interplay between the 1/3 FQHE and RIP.Comment: 4 pages and 1 figure (amsart format), 16th International Conference on High Magnetic Fields in Semiconductor Physics (SemiMag16), August 2-6, 2004, Tallahasse

    Formation of a high quality two-dimensional electron gas on cleaved GaAs

    Get PDF
    We have succeeded in fabricating a two-dimensional electron gas (2DEG) on the cleaved (110) edge of a GaAs wafer by molecular beam epitaxy (MBE). A (100) wafer previously prepared by MBE growth is reinstalled in the MBE chamber so that an in situ cleave exposes a fresh (110) GaAs edge for further MBE overgrowth. A sequence of Si-doped AlGaAs layers completes the modulation-doped structure at the cleaved edge. Mobilities as high as 6.1×10^5 cm^2/V s are measured in the 2DEG at the cleaved interface
    corecore