437 research outputs found

    Prenatal Exposure to Polycyclic Aromatic Hydrocarbons, Benzo[a]pyrene–DNA Adducts, and Genomic DNA Methylation in Cord Blood

    Get PDF
    Background: Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic environmental pollutants generated during incomplete combustion. After exposure and during metabolism, PAHs can form reactive epoxides that can covalently bind to DNA. These PAH–DNA adducts are established markers of cancer risk. PAH exposure has been associated with epigenetic alterations, including genomic cytosine methylation. Both global hypomethylation and hypermethylation of specific genes have been associated with cancer and other diseases in humans. Experimental evidence suggests that PAH–DNA adduct formation may preferentially target methylated genomic regions. Early embryonic development may be a particularly susceptible period for PAH exposure, resulting in both increased PAH–DNA adducts and altered DNA methylation

    K-ras mutations in sinonasal cancers in relation to wood dust exposure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer in the sinonasal tract is rare, but persons who have been occupationally exposed to wood dust have a substantially increased risk. It has been estimated that approximately 3.6 million workers are exposed to inhalable wood dust in EU. In previous small studies of this cancer, <it>ras </it>mutations were suggested to be related to wood dust exposure, but these studies were too limited to detect statistically significant associations.</p> <p>Methods</p> <p>We examined 174 cases of sinonasal cancer diagnosed in Denmark in the period from 1991 to 2001. To ensure uniformity, all histological diagnoses were carefully reviewed pathologically before inclusion. Paraffin embedded tumour samples from 58 adenocarcinomas, 109 squamous cell carcinomas and 7 other carcinomas were analysed for K-<it>ras </it>codon 12, 13 and 61 point mutations by restriction fragment length polymorphisms and direct sequencing. Information on occupational exposure to wood dust and to potential confounders was obtained from telephone interviews and from registry data.</p> <p>Results</p> <p>Among the patients in this study, exposure to wood dust was associated with a 21-fold increased risk of having an adenocarcinoma than a squamous cell carcinoma compared to unexposed [OR = 21.0, CI = 8.0–55.0]. K-<it>ras </it>was mutated in 13% of the adenocarcinomas (seven patients) and in 1% of squamous cell carcinomas (one patient). Of these eight mutations, five mutations were located in the codon 12. The exact sequence change of remaining three could not be identified unambiguously. Among the five identified mutations, the G→A transition was the most common, and it was present in tumour tissue from two wood dust exposed adenocarcinoma patients and one patient with unknown exposure. Previously published studies of sinonasal cancer also identify the GGT → GAT transition as the most common and often related to wood dust exposure.</p> <p>Conclusion</p> <p>Patients exposed to wood dust seemed more likely to develop adenocarcinoma compared to squamous cell carcinomas. K-<it>ras </it>mutations were detected in 13% of adenocarcinomas. In this study and previously published studies of sinonasal cancer the found K-<it>ras </it>mutations, were almost exclusively G → A transitions. In conclusion, our study, based on a large representative collection of human SNC tumours, indicates that K-<it>ras </it>mutations are relatively infrequent, and most commonly occur in adenocarcinomas. Wood dust exposure alone was not found to be explanatory for the G→A mutations, but combination of exposure to tobacco, wood dust, and possibly other occupational agents may be a more likely explanation. Overall, the study suggests a limited role for K-<it>ras </it>mutations in development of sinonasal cancer.</p

    Combination of p53AIP1 and survivin expression is a powerful prognostic marker in non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>p53AIP1 is a potential mediator of apoptosis depending on p53, which is mutated in many kinds of carcinoma. High survivin expression in non-small cell lung cancer is related with poor prognosis. To investigate the role of these genes in non-small cell lung cancer, we compared the relationship between p53AIP1 or survivin gene expression and the clinicopathological status of lung cancer.</p> <p>Materials and methods</p> <p>Forty-seven samples from non-small cell lung cancer patients were obtained between 1997 and 2003. For quantitative evaluation of RNA expression by PCR, we used Taqman PCR methods.</p> <p>Results</p> <p>Although no correlation between p53AIP1 or survivin gene expression and clinicopathological factors was found, the relationship between survivin gene expression and nodal status was significant (p = 0.03). Overall survival in the p53AIP1-negative group was significantly worse than in the positive group (p = 0.04); however, although survivin expression was not a prognostic factor, the combination of p53AIP1 and survivin was a significant prognostic predictor (p = 0.04). In the multivariate cox proportional hazard model, the combination was an independent predictor of overall survival (p53AIP1 (+) survivin (+), HR 0.21, 95%CI = [0.01–1.66]; p53AIP1 (+) survivin (-), HR 0.01, 95%CI = [0.002–0.28]; p53AIP1 (-) survivin (-), HR 0.01, 95%CI = [0.002–3.1], against p53AIP1 (-) survivin (+), p = 0.03).</p> <p>Conclusion</p> <p>These data suggest that the combination of p53AIP1 and survivin gene expression may be a powerful tool to stratify subgroups with better or worse prognosis from the variable non-small cell lung cancer population.</p

    RASSF2, a potential tumour suppressor, is silenced by CpG island hypermethylation in gastric cancer

    Get PDF
    RASSF2, a member of the RASSF1 family, has recently been identified as a potential tumour suppressor. We examined methylation status in multiple regions which included the CpG island and spanned the transcription start site of RASSF2 in 10 gastric cancer cell lines, as well as 78 primary gastric cancers and corresponding non-neoplastic gastric epithelia. Hypermethylation of RASSF2 in at least one of the regions examined was detected in seven (70%) of the 10 cell lines; two (20%) exhibited hypermethylation in all the regions examined including the transcription start site and lost expression of RASSF2 mRNA, which could, however, be restored by 5-aza-2′ deoxycytidine treatment, while the other five (50%) cell lines exhibited hypermethylation at the 5′- and/or 3′- edge, with four of them expressing RASSF2 mRNA. In primary gastric cancers and corresponding non-neoplastic gastric epithelia, frequencies of RASSF2 methylation ranged from 29% (23 out of 78) to 79% (62 out of 78) and 3% (two out of 78) to 60% (47 out of 78), respectively, at different CpG sites examined. Methylation was frequently observed at the 5′- and 3′- edges, and became less frequent near the transcription start site in both the primary gastric cancers and corresponding non-neoplastic gastric epithelia. Hypermethylation near the transcription start site was mostly cancer-specific. We thus showed that RASSF2 is silenced by hypermethylation near the transcription start site in gastric cancer. Hypermethylation was found initially to occur at the 5′- and 3′- furthest regions of the CpG island in non-neoplastic gastric epithelia, to gradually spreads near the transcription start site to shut down RASSF2 expression, and ultimately to constitute a field-defect placing tissue increased risk for development of gastric cancer

    Restriction Site Extension PCR: A Novel Method for High-Throughput Characterization of Tagged DNA Fragments and Genome Walking

    Get PDF
    BACKGROUND: Insertion mutant isolation and characterization are extremely valuable for linking genes to physiological function. Once an insertion mutant phenotype is identified, the challenge is to isolate the responsible gene. Multiple strategies have been employed to isolate unknown genomic DNA that flanks mutagenic insertions, however, all these methods suffer from limitations due to inefficient ligation steps, inclusion of restriction sites within the target DNA, and non-specific product generation. These limitations become close to insurmountable when the goal is to identify insertion sites in a high throughput manner. METHODOLOGY/PRINCIPAL FINDINGS: We designed a novel strategy called Restriction Site Extension PCR (RSE-PCR) to efficiently conduct large-scale isolation of unknown genomic DNA fragments linked to DNA insertions. The strategy is a modified adaptor-mediated PCR without ligation. An adapter, with complementarity to the 3' overhang of the endonuclease (KpnI, NsiI, PstI, or SacI) restricted DNA fragments, extends the 3' end of the DNA fragments in the first cycle of the primary RSE-PCR. During subsequent PCR cycles and a second semi-nested PCR (secondary RSE-PCR), touchdown and two-step PCR are combined to increase the amplification specificity of target fragments. The efficiency and specificity was demonstrated in our characterization of 37 tex mutants of Arabidopsis. All the steps of RSE-PCR can be executed in a 96 well PCR plate. Finally, RSE-PCR serves as a successful alternative to Genome Walker as demonstrated by gene isolation from maize, a plant with a more complex genome than Arabidopsis. CONCLUSIONS/SIGNIFICANCE: RSE-PCR has high potential application in identifying tagged (T-DNA or transposon) sequence or walking from known DNA toward unknown regions in large-genome plants, with likely application in other organisms as well

    Signatures of mutational processes in human cancer.

    Get PDF
    All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, 'kataegis', is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy
    • …
    corecore