4,305 research outputs found

    ESD Ideas: A 6-year oscillation in the whole Earth system?

    Get PDF
    An oscillation of about 6 years has been reported in Earth&rsquo;s fluid core motions, magnetic field, rotation, and crustal deformations. Recently, a 6-year cycle has also been detected in several climatic parameters (e.g., sea level, surface temperature, precipitation, land ice, land hydrology, and atmospheric angular momentum). Here we suggest that the 6-year oscillations detected in the Earth&rsquo;s deep interior, mantle rotation, and atmosphere are linked together, and that the core processes previously proposed as drivers of the 6-year cycle in the Earth&rsquo;s rotation, cause in addition the atmosphere to oscillate together with the mantle, inducing fluctuations in the climate system with similar periodicities.</p

    Prevalence of prediabetes and undiagnosed diabetes in patients with HFpEF and HFrEF and associated clinical outcomes

    Get PDF
    Purpose: The prevalence and consequences of prediabetic dysglycemia and undiagnosed diabetes is unknown in patients with heart failure (HF) and preserved ejection fraction (HFpEF) and has not been compared to heart failure and reduced ejection fraction (HFrEF). Methods: We examined the prevalence and outcomes associated with normoglycemia, prediabetic dysglycemia and diabetes (diagnosed and undiagnosed) among individuals with a baseline glycated hemoglobin (hemoglobin A1c, HbA1c) measurement stratified by HFrEF or HFpEF in the Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity programme (CHARM). We studied the primary outcome of HF hospitalization or cardiovascular (CV) death, and all-cause death, and estimated hazard ratios (HR) by use of multivariable Cox regression models. Results: HbA1c was measured at baseline in CHARM patients enrolled in the USA and Canada and was available in 1072/3023 (35%) of patients with HFpEF and 1578/4576 (34%) patients with HFrEF. 18 and 16% had normoglycemia (HbA1c &lt; 6.0), 20 and 22% had prediabetes (HbA1c 6.0–6.4), respectively. Finally among patients with HFpEF 22% had undiagnosed diabetes (HbA1c &gt; 6.4), and 40% had known diabetes (any HbA1c), with corresponding prevalence among HFrEF patients being 26 and 35%. The rates of both clinical outcomes of interest were higher in patients with undiagnosed diabetes and prediabetes, compared to normoglycemic patients, irrespective of HF subtype, and in general higher among HFrEF patients. For the primary composite outcome among HFpEF patients, the HRs were 1.02 (95% CI 0.63–1.65) for prediabetes, HR 1.18 (0.75–1.86) for undiagnosed diabetes and 2.75 (1.83–4.11) for known diabetes, respectively, p value for trend across groups &lt; 0.001. Dysglycemia was also associated with worse outcomes in HFrEF. Conclusions: These findings confirm the remarkably high prevalence of dysglycemia in heart failure irrespective of ejection fraction phenotype, and demonstrate that dysglycemia is associated with a higher risk of adverse clinical outcomes, even before the diagnosis of diabetes and institution of glucose lowering therapy in patients with HFpEF as well as HFrEF

    Radiation-induced oscillatory magnetoresistance as a sensitive probe of the zero-field spin splitting in high mobility GaAs/AlGaAs devices

    Get PDF
    We suggest an approach for characterizing the zero-field spin splitting of high mobility two-dimensional electron systems, when beats are not readily observable in the Shubnikov-de Haas effect. The zero-field spin splitting and the effective magnetic field seen in the reference frame of the electron is evaluated from a quantitative study of beats observed in radiation-induced magnetoresistance oscillations.Comment: 4 pages, 4 color figure

    Spin-orbit terms in multi-subband electron systems: A bridge between bulk and two-dimensional Hamiltonians

    Full text link
    We analyze the spin-orbit terms in multi-subband quasi-two-dimensional electron systems, and how they descend from the bulk Hamiltonian of the conduction band. Measurements of spin-orbit terms in one subband alone are shown to give incomplete information on the spin-orbit Hamiltonian of the system. They should be complemented by measurements of inter-subband spin-orbit matrix elements. Tuning electron energy levels with a quantizing magnetic field is proposed as an experimental approach to this problem.Comment: Typos noticed in the published version have been corrected and several references added. Published in the special issue of Semiconductors in memory of V.I. Pere

    Combined effect of Zeeman splitting and spin-orbit interaction on the Josephson current in a S-2DEG-S structure

    Full text link
    We analyze new spin effects in current-carrying state of superconductor-2D electron gas-superconductor (S-2DEG-S) device with spin-polarized nuclei in 2DEG region. The hyperfine interaction of 2D electrons with nuclear spins, described by the effective magnetic field B, produces Zeeman splitting of Andreev levels without orbital effects, that leads to the interference pattern of supercurrent oscillations over B. The spin-orbit effects in 2DEG cause strongly anisotropic dependence of the Josephson current on the direction of B, which may be used as a probe for the spin-orbit interaction intensity. Under certain conditions, the system reveals the properties of pi-junction.Comment: 4 pages, 4 figure

    Is the magnetic field necessary for the Aharonov-Bohm effect in mesoscopics?

    Full text link
    A new class of topological mesoscopic phenomena in absence of external magnetic field (meso-nucleo-spinics)is predicted, which is based on combined action of the nonequilibrium nuclear spin population and charge carriers spin-orbit interaction . As an example, we show that Aharonov-Bohm like oscillations of the persistent current in GaAs/AlGaAs based mesoscopic rings may exist, in the absence of the external magnetic field, provided that a topologically nontrivial strongly nonequilibrium nuclear spin population is created. This phenomenon is due to the breaking, via the spin-orbit coupling, of the clock wise - anti clock wise symmetry of the charge carriers momentum, which results in the oscillatory in time persistent current.Comment: 14 pages, Late

    Spatial variability in the flow of a valley glacier: Deformation of a large array of boreholes

    Get PDF
    Measurements of the deformation of a dense array of boreholes in Worthington Glacier, Alaska, show that the glacier moves with generally bed-parallel motion. Strain in the 200 m deep valley glacier is constant near the surface but follows a nonlinear vertical profile below a depth of about 120 m. By a depth of 180 m, the octahedral strain rate reaches 0.35 yr-1. The three-dimensional velocity field shows spatial complexity with significant deviations from plane strain, despite relatively simple valley geometry in the vicinity of the 6 x 106 m3 study volume. No evidence was found for time-varying deformation or movement along localized shear planes. Observations were made by repeatedly measuring the long-axis geometry of 31 closely spaced boreholes over a 70 day period, and three additional holes after 1 full year of deformation. The holes were spaced 15 to 30 m apart. Installation and measurement of such a large number of boreholes required the development of a semi-automated hot water drilling system that creates straight and vertical boreholes with uniform walls. The equipment and procedures enables borehole profiles to be measured without the use of hole casing. Inclinometry measurements collected in the holes were processed, analyzed for error, and visualized as a fully three-dimensional data set. the new methods offer unique insight into small-scale spatial and temporal variations in the pattern of flow in a valley glacier

    Dynamical spin-electric coupling in a quantum dot

    Full text link
    Due to the spin-orbital coupling in a semiconductor quantum dot, a freely precessing electron spin produces a time-dependent charge density. This creates a sizeable electric field outside the dot, leading to promising applications in spintronics. The spin-electric coupling can be employed for non-invasive single spin detection by electrical methods. We also consider a spin relaxation mechanism due to long-range coupling to electrons in gates and elsewhere in the system, and find a contribution comparable to, and in some cases dominant over previously discussed mechanisms.Comment: 4 pages, 2 figure
    • …
    corecore