27 research outputs found

    Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation

    Get PDF
    A lack of accepted standards and standardized phantoms suitable for the technical validation of biophotonic instrumentation hinders the reliability and reproducibility of its experimental outputs. In this Perspective, we discuss general criteria for the design of tissue-mimicking biophotonic phantoms, and use these criteria and state-of-the-art developments to critically review the literature on phantom materials and on the fabrication of phantoms. By focusing on representative examples of standardization in diffuse optical imaging and spectroscopy, fluorescence-guided surgery and photoacoustic imaging, we identify unmet needs in the development of phantoms and a set of criteria (leveraging characterization, collaboration, communication and commitment) for the standardization of biophotonic instrumentation

    An Overview of Three Promising Mechanical, Optical, and Biochemical Engineering Approaches to Improve Selective Photothermolysis of Refractory Port Wine Stains

    Get PDF
    During the last three decades, several laser systems, ancillary technologies, and treatment modalities have been developed for the treatment of port wine stains (PWSs). However, approximately half of the PWS patient population responds suboptimally to laser treatment. Consequently, novel treatment modalities and therapeutic techniques/strategies are required to improve PWS treatment efficacy. This overview therefore focuses on three distinct experimental approaches for the optimization of PWS laser treatment. The approaches are addressed from the perspective of mechanical engineering (the use of local hypobaric pressure to induce vasodilation in the laser-irradiated dermal microcirculation), optical engineering (laser-speckle imaging of post-treatment flow in laser-treated PWS skin), and biochemical engineering (light- and heat-activatable liposomal drug delivery systems to enhance the extent of post-irradiation vascular occlusion)

    Optical Monte Carlo modeling of a true portwine stain anatomy

    Get PDF
    A unique Monte Carlo program capable of accommodating an arbitrarily complex geometry was used to determine the energy deposition in a true port wine stain anatomy. Serial histologic sections taken from a biopsy of a dark red, laser therapy resistant stain were digitized and used to create the program input for simulation at wavelengths of 532 and 585 nm. At both wavelengths, the greatest energy deposition occurred in the superficial blood vessels, and subsequently decreased with depth as the laser beam was attenuated. However, more energy was deposited in the epidermis and superficial blood vessels at 532 nm than at 585 n

    Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains

    No full text
    The thermal response of port wine stain (PWS) skin to a combined treatment of pulsed laser irradiation and cryogen spray cooling (CSC) was analyzed through a series of simulations performed with a novel optical-thermal model that incorporates realistic tissue morphology. The model consisted of (1) a three-dimensional reconstruction of a PWS biopsy, (2) a Monte Carlo optical model, (3) a finite difference heat transfer model, and (4) an Arrhenius thermal damage calculation. Simulations were performed for laser pulses of 0.5, 2, and 10 ms and a wavelength of 585 nm. Simulated cryogen precooling spurts had durations of 0, 20, or 60 ms and terminated at laser onset. Continuous spray cooling, which commenced 60 ms before laser onset and continued through the heating and relaxation phases, was also investigated. The predicted response to CSC included maximal pre-irradiation temperature reductions of 27 degrees C at the superficial surface and 12 degrees C at the dermoepidermal junction. For shorter laser pulses (0.5, 2 ms), precooling significantly reduced temperatures in superficial regions, yet did not effect superficial vessel coagulation. Continuous cooling was required to reduce significantly thermal effects for the 10-ms laser pulse. For the PWS morphology and treatment parameters studied, optimal damage distributions were obtained for a 2-ms laser pulse with a 60-ms precooling spurt. Epidermal and vascular morphology as well as laser pulse duration should be taken into account when planning CSC/laser treatment of PWS. Our novel, realistic-morphology modeling technique has significant potential as a tool for optimizing PWS treatment parameter

    Modeling laser treatment of port wine stains with a computer-reconstructed biopsy

    No full text
    The efficacy of laser treatment of port wine stains (PWS) has been shown to be highly dependent on patient-specific vasculature. The effect of tissue structure on optical and thermal mechanisms was investigated for different pulse durations by using a novel theoretical model that incorporates tissue morphology reconstructed tomographically from a PWS biopsy. An optical-thermal numerical model capable of simulating arbitrarily complex, three-dimensional tissue geometries was developed. The model is comprised of (1) a voxel-based Monte Carlo optical model, (2) a finite difference thermal model, and (3) an Arrhenius rate process calculation to predict the distribution of thermal damage. Simulations based on previous computer-based reconstruction of a series of 6 microm sections from a PWS biopsy were performed for laser pulse durations (taup) of 0.5, 5.0, and 10.0 ms at a wavelength of 585 nm. Energy deposition rate in the blood vessels was primarily a function of vessel depth in skin, although shading effects were evident. Thermal confinement and selectivity of damage were seen to be inversely proportional to pulse duration. The model predicted blood-specific damage for taup = 0.5 ms, vascular and perivascular damage for taup = 5 ms, and widespread damage in superficial regions for taup = 10 ms. The effect of energy deposition in the epidermis was most pronounced for longer pulse durations, resulting in increased temperature and extent of damage. Pulse durations between 0.5 and 5 ms are likely optimal for the PWS analyzed. The incorporation of a tomographically reconstructed PWS biopsy into an optical-thermal model represents a significant advance in numerical modeling of laser-tissue interactio
    corecore