52 research outputs found

    Nodding syndrome in Tanzania may not be associated with circulating anti-NMDA- and anti-VGKC receptor antibodies or decreased pyridoxal phosphate serum levels-a pilot study

    Get PDF
    Background: Nodding syndrome (NS) is a seemingly progressive epilepsy disorder of unknown underlying cause. We investigated association of pyridoxal-phosphate serum levels and occurrence of anti-neuronal antibodies against N-methyl-D-aspartate (NMDA) receptor and voltage gated potassium channel (VGKC) complex in NS patients.Methods: Sera of a Tanzanian cohort of epilepsy and NS patients and community controls were tested for the presence of anti-NMDA-receptor and anti-VGKC complex antibodies by indirect immunofluorescence assay. Furthermore pyridoxal-phosphate levels were measured.Results: Auto-antibodies against NMDA receptor or VGKC (LG1 or Caspr2) complex were not detected in sera of patients suffering from NS (n=6), NS plus other seizure types (n=16), primary generalized epilepsy (n=1) and community controls without epilepsy (n=7). Median Pyridoxal-phosphate levels in patients with NS compared to patients with primary generalized seizures and community controls were not significantly different. However, these median pyridoxal-phosphate levels are significantly lower compared to the range considered normal in Europeans.Conclusions: In this pilot study NS was not associated with serum anti-NMDA receptor or anti-VGKC complex antibodies and no association to pyridoxal-phosphate serum levels was found.Key words: nodding syndrome, epilepsy, anti-neuronal antibodies, pyridoxal-phosphat

    Protocolized Brain Oxygen Optimization in Subarachnoid Hemorrhage.

    Get PDF
    Brain tissue hypoxia (P <sub>bt</sub> O <sub>2</sub> < 20 mmHg) is common after subarachnoid hemorrhage (SAH) and associated with poor outcome. Recent data suggest that brain oxygen optimization is feasible and reduces the time spent with P <sub>bt</sub> O <sub>2</sub> < 20 mmHg from 45 to 16% in patients with severe traumatic brain injury. Here, we intended to quantify the brain tissue hypoxia burden despite implementation of a protocolized treatment approach in poor-grade SAH patients and to identify the simultaneous occurrence of pathologic values potentially amenable to treatment. We present a bi-centric observational cohort study including 100 poor-grade SAH patients admitted to two tertiary care centers who underwent multimodal brain monitoring and were managed with a P <sub>bt</sub> O <sub>2</sub> -targeted protocolized approach. P <sub>bt</sub> O <sub>2</sub> optimization (≥ 20 mmHg) included a stepwise neuro-intensive care approach, aiming to prevent low cerebral perfusion pressure (CPP), and blood hemoglobin, and to keep normocapnia, normoxemia, and normothermia. Based on routine blood gas analysis, hemoglobin, PaCO <sub>2,</sub> and PaO <sub>2</sub> data were matched to 2-h averaged data of continuous CPP, P <sub>bt</sub> O <sub>2</sub> , core temperature, and to hourly cerebral microdialysis (CMD) samples over the first 11 days. Patients had a Glasgow Coma Scale of 3 (IQR 3-4) and were 58 years old (IQR 48-66). Overall incidence of brain tissue hypoxia was 25%, which was not different between both sites despite differences in the treatment approach. During brain tissue hypoxia, episodes of CPP < 70 mmHg (27%), PaCO <sub>2</sub> < 35 mmHg (19%), PaO <sub>2</sub> < 80 mmHg (14%), Hb < 9 g/dL (11%), metabolic crisis (CMD-lactate/pyruvate ratio > 40, and CMD-glucose < 0.7 mmol/L; 7%), and temperature > 38.3 °C (4%) were common. Our results demonstrate that brain tissue hypoxia remains common despite implementation of a P <sub>bt</sub> O <sub>2</sub> -targeted therapy in poor-grade SAH patients, suggesting room for further optimization

    Automated Detection of External Ventricular and Lumbar Drain-Related Meningitis Using Laboratory and Microbiology Results and Medication Data

    Get PDF
    OBJECTIVE: Monitoring of healthcare-associated infection rates is important for infection control and hospital benchmarking. However, manual surveillance is time-consuming and susceptible to error. The aim was, therefore, to develop a prediction model to retrospectively detect drain-related meningitis (DRM), a frequently occurring nosocomial infection, using routinely collected data from a clinical data warehouse. METHODS: As part of the hospital infection control program, all patients receiving an external ventricular (EVD) or lumbar drain (ELD) (2004 to 2009; n = 742) had been evaluated for the development of DRM through chart review and standardized diagnostic criteria by infection control staff; this was the reference standard. Children, patients dying <24 hours after drain insertion or with <1 day follow-up and patients with infection at the time of insertion or multiple simultaneous drains were excluded. Logistic regression was used to develop a model predicting the occurrence of DRM. Missing data were imputed using multiple imputation. Bootstrapping was applied to increase generalizability. RESULTS: 537 patients remained after application of exclusion criteria, of which 82 developed DRM (13.5/1000 days at risk). The automated model to detect DRM included the number of drains placed, drain type, blood leukocyte count, C-reactive protein, cerebrospinal fluid leukocyte count and culture result, number of antibiotics started during admission, and empiric antibiotic therapy. Discriminatory power of this model was excellent (area under the ROC curve 0.97). The model achieved 98.8% sensitivity (95% CI 88.0% to 99.9%) and specificity of 87.9% (84.6% to 90.8%). Positive and negative predictive values were 56.9% (50.8% to 67.9%) and 99.9% (98.6% to 99.9%), respectively. Predicted yearly infection rates concurred with observed infection rates. CONCLUSION: A prediction model based on multi-source data stored in a clinical data warehouse could accurately quantify rates of DRM. Automated detection using this statistical approach is feasible and could be applied to other nosocomial infections

    Bactericidal Activity of Vancomycin in Cerebrospinal Fluid

    No full text

    Neurological side effects and drug interactions of antiviral compounds against SARS-CoV-2.

    No full text
    The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), rapidly spread across the globe. Tremendous efforts have been mobilized to create effective antiviral treatment options to reduce the burden of the disease. This article summarizes the available knowledge about the antiviral drugs against SARS-CoV-2 from a neurologist's perspective. We summarize neurological aspects of antiviral compounds against SARS-CoV-2 with full, conditional, or previous marketing authorization by the European Medicines Agency (EMA). Nirmatrelvir/ritonavir targets the SARS-CoV-2 3c-like protease using combinatorial chemistry. Nirmatrelvir/ritonavir levels are affected by medications metabolized by or inducing CYP3A4, including those used in neurological diseases. Dysgeusia with a bitter or metallic taste is a common side effect of nirmatrelvir/ritonavir. Molnupiravir is a nucleotide analog developed to inhibit the replication of viruses. No clinically significant interactions with other drugs have been identified, and no specific considerations for people with neurological comorbidity are required. In the meantime, inconsistent results from clinical trials regarding efficacy have led to the withdrawal of marketing authorization by the EMA. Remdesivir is a viral RNA polymerase inhibitor and interferes with the production of viral RNA. The most common side effect in patients with COVID-19 is nausea. Remdesivir is a substrate for CYP3A4. Neurological side effects and drug interactions must be considered for antiviral compounds against SARS-CoV-2. Further studies are required to better evaluate their efficacy and adverse events in patients with concomitant neurological diseases. Moreover, evidence from real-world studies will complement the current knowledge
    corecore