55 research outputs found

    Transcutaneous vagus nerve stimulation via tragus or cymba conchae: Are its psychophysiological effects dependent on the stimulation area?

    Get PDF
    Efforts in optimizing transcutaneous vagus nerve stimulation (tVNS) are crucial to further develop its potential in improving cognitive and autonomic regulation. The present study focused on this topic. The aim was to compare for the first time the main stimulation areas of the ear currently used in studies with tVNS, taking cognitive as well as neurophysiological effects into account. The main areas to be compared with one another were tragus, cymba conchae, and earlobe (sham) stimulation. Post-error slowing, which has already been shown to be influenced by tVNS, was used to investigate the cognitive effects of tVNS when applied on the different auricular areas. On the neurophysiological level, we measured pupillary responses as an index of norepinephrine activity during post-error slowing, and cardiac vagal activity to investigate the activation of neural pathways involved in post-error slowing. Stimulation of different auricular areas led to no differences in post-error slowing and in pupillary responses. However, the neurological processes involved in post-error slowing could be observed, since norepinephrine activity increased after committing an error. Further, there was an increase in cardiac vagal activity over the test period that was independent of the stimulation areas. The results suggest that tVNS targeting the ear might have a non-specific effect on the processing of error commission, on pupillary responses, and on cardiac vagal activity. We conclude that it is necessary to consider alternatives for sham conditions other than electrical earlobe stimulation. [Abstract copyright: Copyright © 2021 Elsevier B.V. All rights reserved.

    Small group interventions for children aged 5-9 years old with mathematical learning difficulties

    Get PDF
    The research related to educational interventions for children with mathematical learning difficulties has been increasing steadily. In this chapter I focus on small group interventions for children aged 5–9 years old with learning difficulties in mathematics. First, I describe the important issues: (1) who are the children having problems in mathematics, (2) what do we mean with (special) education intervention, (3) what does Responsiveness to Intervention mean, and (4) what intervention features have been found effective for children aged 5–9 years with learning difficulties in mathematics. Then, I describe the research and developmental work that has been done in Finland on designing web services which provide evidence-based information and materials for educators. The two web services are LukiMat and ThinkMath. Together, these two web services include the knowledge base, assessment batteries and intervention tools to be used in relation to mathematical learning difficulties in the age group 5–9 years.Peer reviewe

    Serial Quantitative Skeletal Scintigraphy in Breast Cancer

    No full text
    • …
    corecore