7 research outputs found

    Structural Disulfide Bonds in the \u3ci\u3eBacillus thuringiensis\u3c/i\u3e subsp. \u3ci\u3eisraelensis\u3c/i\u3e Protein Crystal

    Get PDF
    We examined disulfide bonds in mosquito larvicidal crystals produced by Bacillus thuringiensis subsp. israelensis. Intact crystals contained 2.01 x 10-8 mol of free sulfhydryls and 3.24 x 10--8 mol of disulfides per mg of protein. Reduced samples of alkali-solubilized crystals resolved into several proteins, the most prominent having apparent molecular sizes of 28, 70, 135, and 140 kilodaltons (kDa). Non-reduced samples contained two new proteins of 52 and 26 kDa. When reduced, both the 52- and 26-kDa proteins were converted to 28-kDa proteins. Furthermore, both bands reacted with antiserum prepared against reduced 28-kDa protein. Approximately 50% of the crystal proteins could be solubilized without disulfide cleavage. These proteins were 70 kDa or smaller. Solubilization of the 135- and 140-kDa proteins required disulfide cleavage. Incubation of crystals at pH 12.0 for 2 h cleaved 40% of the disulfide bonds and solubilized 83% of the crystal protein. Alkali-stable disulfides were present in both the soluble and insoluble portions. The insoluble pellet contained 12 to 14 disulfides per 100 kDa of protein and was devoid of sulfhydryl groups. Alkali-solubilized proteins contained both intrachain and interchain disulfide bonds. Despite their structural significance, it is unlikely that disulfide bonds are involved in the formation or release of the larvicidal toxin

    Structural Disulfide Bonds in the \u3ci\u3eBacillus thuringiensis\u3c/i\u3e subsp. \u3ci\u3eisraelensis\u3c/i\u3e Protein Crystal

    Get PDF
    We examined disulfide bonds in mosquito larvicidal crystals produced by Bacillus thuringiensis subsp. israelensis. Intact crystals contained 2.01 x 10-8 mol of free sulfhydryls and 3.24 x 10--8 mol of disulfides per mg of protein. Reduced samples of alkali-solubilized crystals resolved into several proteins, the most prominent having apparent molecular sizes of 28, 70, 135, and 140 kilodaltons (kDa). Non-reduced samples contained two new proteins of 52 and 26 kDa. When reduced, both the 52- and 26-kDa proteins were converted to 28-kDa proteins. Furthermore, both bands reacted with antiserum prepared against reduced 28-kDa protein. Approximately 50% of the crystal proteins could be solubilized without disulfide cleavage. These proteins were 70 kDa or smaller. Solubilization of the 135- and 140-kDa proteins required disulfide cleavage. Incubation of crystals at pH 12.0 for 2 h cleaved 40% of the disulfide bonds and solubilized 83% of the crystal protein. Alkali-stable disulfides were present in both the soluble and insoluble portions. The insoluble pellet contained 12 to 14 disulfides per 100 kDa of protein and was devoid of sulfhydryl groups. Alkali-solubilized proteins contained both intrachain and interchain disulfide bonds. Despite their structural significance, it is unlikely that disulfide bonds are involved in the formation or release of the larvicidal toxin

    Intraguild Predation and Native Lady Beetle Decline

    Get PDF
    Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild predation by both native and exotic predators may contribute to native coccinellid decline, and that landscape structure interacts with local predator communities to shape the specific outcomes of predator-predator interactions

    Stability of the Larvicidal Activity of \u3ci\u3eBacillus thuringiensis\u3c/i\u3e subsp. \u3ci\u3eisraelensis\u3c/i\u3e: Amino Acid Modification and Denaturants

    Get PDF
    The Bacillus thuringiensis subsp. israelensis mosquito larvicidal toxin is not a sulfhydryl-activated toxin. The protein disulfide bonds were cleaved and blocked without loss of toxicity. In contrast, modification of the lysine side chains eliminated toxicity. Additionally, the toxin was resistant to high concentrations of salt (8 M NaBr), organic solvents (40% methanol), denaturants (4 M urea), and neutral detergents (10% Triton X-100). However, it was inactivated by both positively and negatively charged detergents and by guanidine hydrochloride

    Amino Sugars in the Glycoprotein Toxin from \u3ci\u3eBacillus thuringiensis\u3c/i\u3e subsp. \u3ci\u3eisraelensis\u3c/i\u3e

    Get PDF
    The carbohydrate content of purified Bacillus thuringiensis subsp. israelensis crystal toxin was determined by six biochemical tests, column chromatography on an amino acid analyzer, and the binding of 11 fluorescent lectins. The crystals contained approximately 1.0% neutral sugars and 1.7% amino sugars. The anmino sugars consisted of 70% glucosamine and 30% galactosamine. No N-acetylneuraminic acid (sialic acid) was detected. The presence of amino sugars was confirmed by the strong binding of fluorescent wheat germ agglutinin and the weak binding of fluorescent soybean agglutinin. These lectins recognize N-acetyl-D-glucosamine and N-acetyl-D-galactosamine, respectively. The lectin-binding sites appeared evenly distributed among the protein subunits of the crystal. The sugars were covalently attached to the crystal toxin because wheat germ agglutinin still bound alkali-solubilized toxin which had been boiled in sodium dodecyl sulfate, separated by polyacrylamide gel electrophoresis, and transferred to nitrocellulose membranes. This study demonstrates the covalent attachment of amino sugars and indicates that the B. thuringiensis subsp. israelensis protein toxins should be viewed as glycoprotein toxins. The crystals used in the present study were purified on sodium bromide density gradients. Studies employing crystals purified on Renografin density gradients can give artificially high values for the anthrone test for neutral sugars

    Immunological Relationships among Proteins Making Up the \u3ci\u3eBacillus thuringiensis \u3c/i\u3esubsp. \u3ci\u3eisraelensis\u3c/i\u3e Crystalline Toxin

    Get PDF
    The immunological relationships among the proteins of the mosquito larvicidal toxin produced by Bacillus thuringiensis subsp. israelensis have been investigated by using polyclonal antisera specific for the 28-, 70-, and 135-kilodalton proteins. Each of these proteins was immunologically distinct. There was no cross-reaction among the three proteins and the two non-homologous antisera. Treatment of toxin proteins with larval gut enzymes for 20 h identified protease-resistant domains at approximately 65, 38, and 22 kilodaltons. Similar domains were generated by treatment with trypsin and chymotrypsin. Our immunological and kinetic data indicate that the 28-kilodalton protein is degraded successively to protein bands at 26, 25, 23, and 22 kilodaltons, the 70-kilodalton protein is degraded to a protein at 38 kilodaltons, and the 135-kilodalton protein is degraded successively to protein bands at 94, 72, and, probably, 65 kilodaltons. Solubilized toxin possesses two biological activities, larvicidal and general cytolytic (hemolytic). We used nondenaturing gel electrophoresis to show that the hemolytic activity resides in the 28-kilodalton protein. However, higher-molecular-weight proteins are required to achieve the level of toxicity observed in intact toxin

    Analysis of Mosquito Larvicidal Potential Exhibited by Vegetative Cells of \u3ci\u3eBacillus thuringiensis\u3c/i\u3e subsp. \u3ci\u3eisraelensis\u3c/i\u3e

    Get PDF
    Vegetative Bacillus thuringiensis subsp. israelensis cells (6 x 105/ml) achieved 100% mortality of Aedes aegypti larvae within 24 h. This larvicidal potential was localized within the cells; the cell-free supernatants did not kill mosquito larvae. However, they did contain a heat-labile hemolysin which was immunologically distinct from the general cytolytic (hemolytic) factor released during solubilization of B. thuringiensis subsp. israelensis crystals. The larvicidal potential of the vegetative cells was not due to poly-3-hydroxybutyrate. Instead, it correlated with the ability of vegetative cells to sporulate during the bioassays. No toxicity was observed when bioassays were conducted in the presence of chloramphenicol or streptomycin. It is unlikely that the vegetative cells sporulate in the alkaline (pH 9.5 to 10.5) larval guts after ingestion. B. thuringiensis subsp. israelensis is not an alkalophile; we have been unable to grow it in culture at pH values of .9.5. Moreover, we have been unable to demonstrate formation of a protective capsule. However, bacteria may replicate in the gut fluids of dead or dying mosquito larvae because their alkaline gut pH values drop markedly after exposure to the B. thuringiensis subsp. israelensis crystal toxins
    corecore