5 research outputs found

    Rational Micro/Nanostructuring for Thin-Film Evaporation

    No full text
    Heat management in electronics and photonics devices is a critical challenge impeding accelerated breakthrough in these fields. Among approaches for heat dissipation, thin-film evaporation with micro/nanostructures has been one of the most promising approaches that can address future technological demand. The geometry and dimension of these micro/nanostructures directly govern the interfacial heat flux. Here, through theoretical and experimental analysis, we find that there is an optimal dimension of micro/nanostructures that maximizes the interfacial heat flux by thin-film evaporation. This optimal criterion is a consequence of two opposing phenomena: nonuniform evaporation flux across a liquid meniscus (divergent mass flux near the three-phase contact line) and the total liquid area exposed for evaporation. In vertical micro/nanostructures, the optimal width-to-spacing ratio is 1.27 for square pillars and 1.5 for wires (e.g., nanowires). This general criterion is independent of the solid material and the thermophysical properties of the cooling liquid. At the optimal width-to-spacing ratio, as the density of the pillars increases (i.e., smaller pillar’s dimension), the interfacial heat flux increases. This study provides a direction for rational development of micro/nanostructures for thin-film evaporation and paves the path for development of high-performance thermal management systems

    Decoupled Hierarchical Structures for Suppression of Leidenfrost Phenomenon

    No full text
    Thermal management of high temperature systems through cooling droplets is limited by the existence of the Leidenfrost point (LFP), at which the formation of a continuous vapor film between a hot solid and a cooling droplet diminishes the heat transfer rate. This limit results in a bottleneck for the advancement of the wide spectrum of systems including high-temperature power generation, electronics/photonics, reactors, and spacecraft. Despite a long time effort on development of surfaces for suppression of this phenomenon, this limit has only shifted to higher temperatures, but still exists. Here, we report a new multiscale decoupled hierarchical structure that suppress the Leidenfrost state and provide efficient heat dissipation at high temperatures. The architecture of these structures is composed of a nanomembrane assembled on top of a deep micropillar structure. This architecture allows to independently tune the involved forces and to suppress LFP. Once a cooling droplet contacts these surfaces, by rerouting the path of vapor flow, the cooling droplet remains attached to the hot solid substrates even at high temperatures (up to 570 °C) for heat dissipation with no existence of Leidenfrost phenomenon. These new surfaces offer unprecedented heat dissipation capacity at high temperatures (2 orders of magnitude higher than the other state-of-the-art surfaces). We envision that these surfaces open a new avenue in thermal management of high-temperature systems through spray cooling

    Decoupled Hierarchical Structures for Suppression of Leidenfrost Phenomenon

    No full text
    Thermal management of high temperature systems through cooling droplets is limited by the existence of the Leidenfrost point (LFP), at which the formation of a continuous vapor film between a hot solid and a cooling droplet diminishes the heat transfer rate. This limit results in a bottleneck for the advancement of the wide spectrum of systems including high-temperature power generation, electronics/photonics, reactors, and spacecraft. Despite a long time effort on development of surfaces for suppression of this phenomenon, this limit has only shifted to higher temperatures, but still exists. Here, we report a new multiscale decoupled hierarchical structure that suppress the Leidenfrost state and provide efficient heat dissipation at high temperatures. The architecture of these structures is composed of a nanomembrane assembled on top of a deep micropillar structure. This architecture allows to independently tune the involved forces and to suppress LFP. Once a cooling droplet contacts these surfaces, by rerouting the path of vapor flow, the cooling droplet remains attached to the hot solid substrates even at high temperatures (up to 570 °C) for heat dissipation with no existence of Leidenfrost phenomenon. These new surfaces offer unprecedented heat dissipation capacity at high temperatures (2 orders of magnitude higher than the other state-of-the-art surfaces). We envision that these surfaces open a new avenue in thermal management of high-temperature systems through spray cooling

    Decoupled Hierarchical Structures for Suppression of Leidenfrost Phenomenon

    No full text
    Thermal management of high temperature systems through cooling droplets is limited by the existence of the Leidenfrost point (LFP), at which the formation of a continuous vapor film between a hot solid and a cooling droplet diminishes the heat transfer rate. This limit results in a bottleneck for the advancement of the wide spectrum of systems including high-temperature power generation, electronics/photonics, reactors, and spacecraft. Despite a long time effort on development of surfaces for suppression of this phenomenon, this limit has only shifted to higher temperatures, but still exists. Here, we report a new multiscale decoupled hierarchical structure that suppress the Leidenfrost state and provide efficient heat dissipation at high temperatures. The architecture of these structures is composed of a nanomembrane assembled on top of a deep micropillar structure. This architecture allows to independently tune the involved forces and to suppress LFP. Once a cooling droplet contacts these surfaces, by rerouting the path of vapor flow, the cooling droplet remains attached to the hot solid substrates even at high temperatures (up to 570 °C) for heat dissipation with no existence of Leidenfrost phenomenon. These new surfaces offer unprecedented heat dissipation capacity at high temperatures (2 orders of magnitude higher than the other state-of-the-art surfaces). We envision that these surfaces open a new avenue in thermal management of high-temperature systems through spray cooling

    Antiscaling Magnetic Slippery Surfaces

    No full text
    Scale formation is a common problem in a wide range of industries such as oil and gas, water desalination, and food processing. Conventional solutions for this problem including mechanical removal and chemical dissolution are inefficient, costly, and sometimes environmentally hazardous. Surface modification approaches have shown promises to address this challenge. However, these approaches suffer from intrinsic existence of solid–liquid interfaces leading to high rate of scale nucleation and high adhesion strength of the formed scale. Here, we report a new surface called magnetic slippery surface in two forms of Newtonian fluid (MAGSS) and gel structure (Gel-MAGSS). These surfaces provide a liquid–liquid interface to elevate the energy barrier for scale nucleation and minimize the adhesion strength of the formed scale on the surface. Performance of these new surfaces in both static and dynamic (under fluid flow) configurations is examined. These surfaces show superior antiscaling properties with an order of magnitude lower scale accretion compared to the solid surfaces and offer longevity and stability under high shear flow conditions. We envision that these surfaces open a new path to address the scale problem in the relevant technologies
    corecore