124 research outputs found

    Time-resolved fluoroimmunoassay for bactericidal/permeability-increasing protein

    Get PDF
    Bactericidal/permeability-increasing protein (BPI) is a cationic antimicrobial protein produced by polymorphonuclear leukocytes, that specifically interacts with and kills Gram-negative bacteria. BPl competes with lipopolysaccharide-binding protein (LBP) secreted by liver cells into blood plasma for binding to lipopolysaccharide (LPS) and thus reduces the proinflammatory effects of LPS. We have developed a time-resolved fluoroimmunoassay for BPI and measured the concentration of BPI in human serum and plasma samples. The assay is based on a rabbit antibody against recombinant BPI. This antibody specifically adheres to polymorphonuclear leukocytes in immunostained human tissues. The difference in the serum concentration of BPI between unselected hospitalized patients with and without an infection was statistically significant. The mean concentration of BPI in serum samples was 28.3 μg/l (range 1.64–132, S.D. 26.8, n = 83). In contrast, there was no difference between the two groups in the BPI levels in plasma samples. For all individuals tested, BPI levels were consistently higher in plasma samples compared to the matched serum samples. The mean concentration of BPI in plasma samples was 52.3 μg/l (range 0.9–403, S.D. 60.6, n = 90). There was a positive correlation between the concentration of BPI and the white blood cell count as well as between the BPI concentration and C-reactive protein (CRP) in serum samples. In conclusion, the present study demonstrates that BPI can be quantified reliably by time-resolved fluoroimmunoassay in human serum samples

    Identification of dissolved organic matter size components in freshwater and marine environments

    Get PDF
    Dissolved organic matter (DOM) in the transition zone from freshwater to marine systems was analyzed with a new approach for parameterizing the size distribution of organic compounds. We used size-exclusion chromatography for molecular size analysis and quantified colored DOM (CDOM) on samples from two coastal environments in the Baltic Sea (Roskilde Fjord, Denmark and Gulf of Gdansk, Poland). We applied a Gaussian decomposition method to identify peaks from the chromatograms, providing information beyond bulk size properties. This approach complements methods where DOM is separated into size classes with pre-defined filtering cutoffs, or methods where chromatograms are used only to infer average molecular weight. With this decomposition method, we extracted between three and five peaks from each chromatogram and clustered these into three size groups. To test the applicability of our method, we linked our decomposed peaks with salinity, a major environmental driver in the freshwater-marine continuum. Our results show that when moving from freshwater to low-salinity coastal waters, the observed steep decrease of apparent molecular weight is mostly due to loss of the high-molecular-weight fraction (HMW; >2 kDa) of CDOM. Furthermore, most of the CDOM absorbance in freshwater originates from HMW DOM, whereas the absorbing moieties are more equally distributed along the smaller size range (<2 kDa) in marine samples.Peer reviewe

    Optical Absorptivity versus Molecular Composition of Model Organic Aerosol Matter

    Full text link
    • …
    corecore