566 research outputs found

    Polar phonons in some compressively stressed epitaxial and polycrystalline SrTiO3 thin films

    Full text link
    Several SrTiO3 (STO) thin films without electrodes processed by pulsed laser deposition, of thicknesses down to 40 nm, were studied using infrared transmission and reflection spectroscopy. The complex dielectric responses of polar phonon modes, particularly ferroelectric soft mode, in the films were determined quantitatively. The compressed epitaxial STO films on (100) La0.18Sr0.82Al0.59-Ta0.41O3 substrates (strain 0.9%) show strongly stiffened phonon responses, whereas the soft mode in polycrystalline film on (0001) sapphire substrate shows a strong broadening due to grain boundaries and/or other inhomogeneities and defects. The stiffened soft mode is responsible for a much lower static permittivity in the plane of the compressed film than in the bulk samples.Comment: 11 page

    Central mode and soft mode behavior in PbMg1/Nb2/3O3 relaxor ferroelectric

    Full text link
    The relaxor ferroelectric PbMg1/Nb2/3O3 was investigated by means of broad-band dielectric and Fourier Transform Infrared (FTIR) transmission spectroscopy in the frequency range from 1 MHz to 15 THz at temperatures between 20 and 900 K using PMN films on infrared transparent sapphire substrates. While thin film relaxors display reduced dielectric permittivity at low frequencies, their high frequency intrinsic or lattice response is shown to be the same as single crystal/ceramic specemins. It was observed that in contrast to the results of inelastic neutron scattering, the optic soft mode was underdamped at all temperatures. On heating, the TO1 soft phonon followed the Cochran law with an extrapolated critical temperature equal to the Burns temperature of 670 K and softened down to 50 cm-1. Above 450 K the soft mode frequency leveled off and slightly increased above the Burns temperature. A central mode, describing the dynamics of polar nanoclusters appeared below the Burns temperature at frequencies near the optic soft mode and dramatically slowed down below 1 MHz on cooling below room temperature. It broadened on cooling, giving rise to frequency independent losses in microwave and lower frequency range below the freezing temperature of 200 K. In addition, a new heavily damped mode appeared in the FTIR spectra below the soft mode frequency at room temperature and below. The origin of this mode as well as the discrepancy between the soft mode damping in neutron and infrared spectra is discussed.Comment: 7 pages with 7 figures, submitted to Phys. Rev.

    Origin of the "Waterfall" Effect in Phonon Dispersion of Relaxor Perovskites

    Get PDF
    Inelastic neutron scattering study of the perovskite relaxor ferroelectric PZN:8%PT elucidates the origin of the previously reported unusual kink on the low frequency transverse phonon dispersion curve (known as "waterfall" effect). We show that its position depends on the choice of the Brillouin zone and that the relation of its position to the size of the polar nanoregions is highly improbable. The observation is explained in the framework of a simple model of coupled damped harmonic oscillators representing the acoustic and optic phonon branches.Comment: 4 pages, 6 figures, LaTe

    Peculiar Bi-ion dynamics in Na1/2Bi1/2TiO3 from terahertz and microwave dielectric spectroscopy

    Full text link
    Dynamics of the main dielectric anomaly in Na1/2Bi1/2TiO3 (NBT) was studied by time-domain THz and microwave spectroscopy, using also previously published data and their new overall fits. Above the dielectric maximum temperature Tm ~ 600 K, the response consists of coupled sub-THz oscillator and a relaxation mode, assigned to strongly anharmonic Bi-ion vibrations and hopping, whose slowing down explains the paraelectric-like permittivity increase to Tm. Below Tm, the main relaxation continues slowing down and additional relaxation, assigned to quasi-Debye losses, appears in the 10^11 Hz range. The oscillator hardens on cooling and takes over the whole oscillator strength. The permittivity decrease below Tm is caused by the reduced strength of the relaxations due to dominance of the rhombohedral phase within the coexistence region with the tetragonal phase. The anharmonic dynamics of Bi is supported by previous structural studies. NBT represents a hybrid between standard and relaxor ferroelectric behaviour

    Pressure-induced changes in the optical properties of quasi-one-dimensional β\beta-Na0.33_{0.33}V2_2O5_5

    Full text link
    The pressure-induced changes in the optical properties of β\beta-Na0.33_{0.33}V2_2O5_5 single crystals at room temperature were studied by polarization-dependent Raman and far-infrared reflectivity measurements under high pressure. From the changes in the Raman- and infrared-active phonon modes in the pressure range 9 - 12 GPa a transfer of charge between the different V sites can be inferred. The importance of electron-phonon coupling in the low-pressure regime is discussed.Comment: 7 pages, 5 figure
    • …
    corecore