2,182 research outputs found
On the Mass Eigenstate Composition of the 8B Neutrinos from the Sun
The present data of gallium experiments provide indirectly the only
experimental limit on the fraction of mass eigenstate for the B
neutrinos from the Sun. However, if to use the experimental data alone, the
fraction of and, consequently, still is allowed to
be varied within a rather broad range. The further experimental efforts are
needed to clear this point.Comment: 13 pages, 1 figure, 1 table. Corrected version, published in
JCAP04(2007)00
Cosmic ray acceleration by stellar wind. Simulation for heliosphere
The solar wind deceleration by the interstellar medium may result in the existence of the solar wind terminal shock. In this case a certain fraction of thermal particles after being heated at the shock would obtain enough energy to be injected to the regular acceleration process. An analytical solution for the spectrum in the frame of a simplified model that includes particle acceleration at the shock front and adiabatic cooling inside the stellar wind cavity has been derived. It is shown that the acceleration of the solar wind particles at the solar wind terminal shock is capable of providing the total flux, spectrum and radial gradients of the low-energy protons close to one observed in the interplanetary space
Pump-Probe Experiments on the Single-Molecule Magnet Fe8 : Measurement of Excited Level Lifetimes
We present magnetization measurements on the single molecule magnet Fe8 in
the presence of pulsed microwave radiation. A pump-probe technique is used with
two microwave pulses with frequencies of 107 GHz and 118 GHz and pulse lengths
of several nanoseconds to study the spin dynamics via time-resolved
magnetization measurements using a Hall probe magnetometer. We find evidence
for short spin-phonon relaxation times of the order of one microsecond. The
temperature dependence of the spin-phonon relaxation time in our experiments is
in good agreement with previously published theoretical results. We also
established the presence of very short energy diffusion times, that act on a
timescale of about 70 ns.Comment: submitted to Phys. Rev. Lett. (01 March 2007
Size-independence of statistics for boundary collisions of random walks and its implications for spin-polarized gases
A bounded random walk exhibits strong correlations between collisions with a
boundary. For an one-dimensional walk, we obtain the full statistical
distribution of the number of such collisions in a time t. In the large t
limit, the fluctuations in the number of collisions are found to be
size-independent (independent of the distance between boundaries). This occurs
for any inter-boundary distance, including less and greater than the
mean-free-path, and means that this boundary effect does not decay with
increasing system-size. As an application, we consider spin-polarized gases,
such as 3-Helium, in the three-dimensional diffusive regime. The above results
mean that the depolarizing effect of rare magnetic-impurities in the container
walls is orders of magnitude larger than a Smoluchowski assumption (to neglect
correlations) would imply. This could explain why depolarization is so
sensitive to the container's treatment with magnetic fields prior to its use.Comment: 5 page manuscript with extra details in appendices (additional 3
pages
Self-organized escape of oscillator chains in nonlinear potentials
We present the noise free escape of a chain of linearly interacting units
from a metastable state over a cubic on-site potential barrier. The underlying
dynamics is conservative and purely deterministic. The mutual interplay between
nonlinearity and harmonic interactions causes an initially uniform lattice
state to become unstable, leading to an energy redistribution with strong
localization. As a result a spontaneously emerging localized mode grows into a
critical nucleus. By surpassing this transition state, the nonlinear chain
manages a self-organized, deterministic barrier crossing. Most strikingly,
these noise-free, collective nonlinear escape events proceed generally by far
faster than transitions assisted by thermal noise when the ratio between the
average energy supplied per unit in the chain and the potential barrier energy
assumes small values
Thermal suppression of surface barrier in ultrasmall superconducting structures
In the recent experiment by Cren \textit{et al.} [Phys. Rev. Lett.
\textbf{102}, 127005 (2009)], no hysteresis for vortex penetration and
expulsion from the nano-island of Pb was observed. In the present paper, we
argue that this effect can be associated with the thermoactivated surmounting
of the surface barrier by a vortex. The typical entrance (exit) time is found
analytically from the Fokker-Planck equation, written in the form suitable for
the extreme vortex confinement. We show that this time is several orders of
magnitude smaller than 1 second under the conditions of the experiment
considered. Our results thus demonstrate a possibility for the thermal
suppression of the surface barrier in nanosized low- superconductors. We
also briefly discuss other recent experiments on vortices in related
structures.Comment: 12 pages, 2 figure
Piezomagnetic Quantum Dots
We study the influence of deformations on magnetic ordering in quantum dots
doped with magnetic impurities. The reduction of symmetry and the associated
deformation from circular to elliptical quantum confinement lead to the
formation of piezomagnetic quantum dots. The strength of elliptical deformation
can be controlled by the gate voltage to change the magnitude of magnetization,
at a fixed number of carriers and in the absence of applied magnetic field. We
reveal a reentrant magnetic ordering with the increase of elliptical
deformation and suggest that the piezomagnetic quantum dots can be used as
nanoscale magnetic switches.Comment: 4 pages, 3 figure
- …