36 research outputs found

    Restricting Dosage Compensation Complex Binding to the X Chromosomes by H2A.Z/HTZ-1

    Get PDF
    Dosage compensation ensures similar levels of X-linked gene products in males (XY or XO) and females (XX), despite their different numbers of X chromosomes. In mammals, flies, and worms, dosage compensation is mediated by a specialized machinery that localizes to one or both of the X chromosomes in one sex resulting in a change in gene expression from the affected X chromosome(s). In mammals and flies, dosage compensation is associated with specific histone posttranslational modifications and replacement with variant histones. Until now, no specific histone modifications or histone variants have been implicated in Caenorhabditis elegans dosage compensation. Taking a candidate approach, we have looked at specific histone modifications and variants on the C. elegans dosage compensated X chromosomes. Using RNAi-based assays, we show that reducing levels of the histone H2A variant, H2A.Z (HTZ-1 in C. elegans), leads to partial disruption of dosage compensation. By immunofluorescence, we have observed that HTZ-1 is under-represented on the dosage compensated X chromosomes, but not on the non-dosage compensated male X chromosome. We find that reduction of HTZ-1 levels by RNA interference (RNAi) and mutation results in only a very modest change in dosage compensation complex protein levels. However, in these animals, the X chromosome–specific localization of the complex is partially disrupted, with some nuclei displaying DCC localization beyond the X chromosome territory. We propose a model in which HTZ-1, directly or indirectly, serves to restrict the dosage compensation complex to the X chromosome by acting as or regulating the activity of an autosomal repellant

    Proceedings of the Virtual 3rd UK Implementation Science Research Conference : Virtual conference. 16 and 17 July 2020.

    Get PDF

    Targeting the X for Chromosome-Wide Gene Regulation.

    Full text link
    Dosage compensation is an essential gene regulation mechanism that balances X-linked gene expression in organisms that utilize a chromosome-based sex determination strategy. The mechanisms of dosage compensation that have been studied all involve specialized gene regulatory machineries that specifically localize to and function on the dosage compensated chromosome(s). In C. elegans, this machinery is called the Dosage Compensation Complex (DCC) and it balances X linked gene expression between XX hermaphrodites and XO males by binding the two hermaphrodite X chromosomes to reduce expression two-fold. The goal of my thesis is to address the gap in our understanding of how the initial targeting of the DCC to the X chromosomes is achieved. In this work I have examined the requirements within a sub-complex of the DCC, Condensin IDC, for X chromosome localization and contributed to our understanding of Condensin I localization in mitosis and meiosis. I have also provided the first evidence that chromatin, specifically the histone variant H2A.Z/HTZ-1 contributes to DCC targeting. Finally, I have demonstrated that the DCC regulatory subunit, DPY-30, functions in dosage compensation in a manner that is completely independent of its role in H3K4 methyltransferase complexes. Together, this work serves as the first investigation on the role of chromatin in targeting the DCC to the X chromosomes in C. elegans and serves as an example of how chromatin organization functions in eukaryotic gene regulation.Ph.D.Molecular, Cellular, and Developmental BiologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86556/1/emilynnp_1.pd

    Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae

    No full text
    Histone modifications direct chromatin-templated events in the genome and regulate access to DNA sequence information. There are multiple types of modifications, and a common feature is their dynamic nature. An essential step for understanding their regulation, therefore, lies in characterizing the enzymes responsible for adding and removing histone modifications. Starting with a dosage-suppressor screen in Saccharomyces cerevisiae, we have discovered a functional interaction between the acetyltransferase Gcn5 and the protein phosphatase 2A (PP2A) complex, two factors that regulate post-translational modifications. We find that RTS1, one of two genes encoding PP2A regulatory subunits, is a robust and specific high-copy suppressor of temperature sensitivity of gcn5∆ and a subset of other gcn5∆ phenotypes. Conversely, loss of both PP2A(Rts1) and Gcn5 function in the SAGA and SLIK/SALSA complexes is lethal. RTS1 does not restore global transcriptional defects in gcn5∆; however, histone gene expression is restored, suggesting that the mechanism of RTS1 rescue includes restoration of specific cell cycle transcripts. Pointing to new mechanisms of acetylation-phosphorylation cross-talk, RTS1 high-copy rescue of gcn5∆ growth requires two residues of H2B that are phosphorylated in human cells. These data highlight the potential significance of dynamic phosphorylation and dephosphorylation of these deeply conserved histone residues for cell viability

    Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in Saccharomyces cerevisiae

    No full text
    Histone modifications direct chromatin-templated events in the genome and regulate access to DNA sequence information. There are multiple types of modifications, and a common feature is their dynamic nature. An essential step for understanding their regulation, therefore, lies in characterizing the enzymes responsible for adding and removing histone modifications. Starting with a dosage-suppressor screen in Saccharomyces cerevisiae, we have discovered a functional interaction between the acetyltransferase Gcn5 and the protein phosphatase 2A (PP2A) complex, two factors that regulate post-translational modifications. We find that RTS1, one of two genes encoding PP2A regulatory subunits, is a robust and specific high-copy suppressor of temperature sensitivity of gcn5∆ and a subset of other gcn5∆ phenotypes. Conversely, loss of both PP2A(Rts1) and Gcn5 function in the SAGA and SLIK/SALSA complexes is lethal. RTS1 does not restore global transcriptional defects in gcn5∆; however, histone gene expression is restored, suggesting that the mechanism of RTS1 rescue includes restoration of specific cell cycle transcripts. Pointing to new mechanisms of acetylation–phosphorylation cross-talk, RTS1 high-copy rescue of gcn5∆ growth requires two residues of H2B that are phosphorylated in human cells. These data highlight the potential significance of dynamic phosphorylation and dephosphorylation of these deeply conserved histone residues for cell viability

    Genomic characterization of human SEC14L1 splice variants within a 17q25 candidate tumor suppressor gene region and identification of an unrelated embedded expressed sequence tag

    Full text link
    Human SEC14L1 shows partial sequence homology to the budding yeast SEC14 protein and the Japanese flying squid retinal-binding protein and was previously generally localized to 17q25. We more precisely mapped SEC14L1 within a discrete region of 17q25 that likely harbors at least one putative breast and ovarian tumor suppressor gene. We determined that this gene consists of 18 exons ranging in size from 70 bp (exon 11) to 3088 bp (exon 17) and spanning at least 58 kb of DNA. Exon 17 contained a highly polymorphic variable number of tandem repeats (VNTR) and was present only in the larger ubiquitously expressed 5.5-kb transcript. The 3.0-kb ubiquitously expressed transcript included sequences at the beginning of exon 17 (designated exon 17a) and the end of exon 17 (designated exon 18), but lacked the internal 2439 bp of exon 17, including the VNTR. This alternative splicing resulted in a predicted protein of 719 residues from the smaller transcript with four more terminal amino acids than the 715 residue protein predicted from the larger transcript. EST H49244 spanned exon 11 of SEC14L1 and was specifically expressed in human peripheral blood leukocytes. One intragenic single nucleotide polymorphism (SNP) was confirmed. SEC14L1 contained the CRAL/TRIO domain also found in alpha-tocopherol transfer protein (TTPA) and cellular retinaldehyde-binding protein (CRALBP). As retinoids have been shown to inhibit the growth of breast cancer cells, loss of the proposed SEC14L1 retinal-binding function may contribute to breast tumorigenesis. As TTPA and CRALBP have been implicated in retinitis pigmentosa (RP), altered SEC14L1 expression may contribute to RP in previously unlinked families. Coding exon-specific PCR primers were designed to aid in future expression and mutational analyses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42124/1/335-12-12-925_10120925.pd
    corecore