8 research outputs found

    Micro-Raman Imaging of Isomeric Segregation in Small-Molecule Organic Semiconductors

    Get PDF
    Charge transport in organic semiconductors is highly sensitive to film heterogeneity and intermolecular interactions, but probing these properties on the length scales of disorder is often difficult. Here we use micro-Raman spectroscopy to assign vibrational modes of isomerically pure syn and anti 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES ADT) by comparing to density functional theory calculations. With polarization-dependent measurements, we determine the orientation of crystallites in pure isomers. In mixed-isomer samples, we observe narrow linewidths and superposition spectra, indicating coexistence of isomerically pure sub-domains on length scales smaller than the probe area. Using the ring breathing modes close to 1300 cm−1 as indicators of the pure isomer crystalline sub-domains, we image their spatial distribution with 200-nm resolution. These results demonstrate the power of micro-Raman spectroscopy for investigating spatial heterogeneities and clarifying the origin of the reduced charge carrier mobility displayed in mixed-isomer diF-TES ADT

    Computationally Aided Design of a High-Performance Organic Semiconductor: The Development of a Universal Crystal Engineering Core

    Get PDF
    Herein, we describe the design and synthesis of a suite of molecules based on a benzodithiophene “universal crystal engineering core”. After computationally screening derivatives, a trialkylsilylethyne-based crystal engineering strategy was employed to tailor the crystal packing for use as the active material in an organic field-effect transistor. Electronic structure calculations were undertaken to reveal derivatives that exhibit exceptional potential for high-efficiency hole transport. The promising theoretical properties are reflected in the preliminary device results, with the computationally optimized material showing simple solution processing, enhanced stability, and a maximum hole mobility of 1.6 cm2 V−1 s−1

    Decoupling the Influence of Poly(3,4‐Ethylenedioxythiophene)‐Collagen Composite Characteristics on Cell Stemness

    No full text
    Abstract Conductive polymers (CPs) are widely studied for their ability to influence a myriad of tissue systems. While their mixed ionic/electronic conductivity is commonly considered the primary driver of these benefits, the mechanisms by which CPs influence cell fate remain unclear. In this study, CP‐biomaterial interactions are investigated using collagen, due to its widespread prevalence throughout the body and in tissue engineering constructs. Collagen is functionalized with both electrostatically and covalently bound derivatives of the CP poly(3,4‐ethylenedioxythiophene) (PEDOT) doped via backbone‐tethered sulfonate groups, which enable high solubility and loading to the collagen biomatrix. Intrinsically doped scaffolds are compared to those incorporated with a commercially available PEDOT formulation, which is complexed with polyanionic polystyrene sulfonate (PSS). Low loadings of intrinsically doped PEDOT do not increase substrate conductivity compared to collagen alone, enabling separate investigation into CP loading and conductivity. Interestingly, higher PEDOT loading bolsters human mesenchymal stromal (hMSC) cell gene expression of Oct‐4 and NANOG, which are key transcription factors regulating cell stemness. Conductive collagen composites with commercial PEDOT:PSS do not significantly affect the expression of these transcription factors in hMSCs. Furthermore, it is demonstrated that PEDOT regulates cellular fate independently from physical changes to the material but directly to the loading of the polymer

    Ion Coordination and Chelation in a Glycolated Polymer Semiconductor: Molecular Dynamics and X-ray Fluorescence Study

    No full text
    Polythiophenes bearing glycolated side chains have rapidly surged as the highest performing materials for organic electrochemical transistors (OECTs) because of their ability to conjugate volumetric ion penetration with high hole mobility and charge density. Among them, p(g2T-TT) has one of the highest figures of merit. Our work provides an atomistic picture of the p(g2T-TT)–electrolyte interface in the “off” state of an OECT, expected to be dominated by cation–polymer interactions. Using a combination of molecular dynamics simulations and X-ray fluorescence, we show how different anions effectively tune the coordination and chelation of cations by p(g2T-TT). At the same time, softer and hydrophobic anions such as TFSI– and ClO4– are found to preferentially interact with the p(g2T-TT) phase, further enhancing the polymer–cation chelation. We highlight how the stronger hydrophobic nature of TFSI– causes its preferential accumulation at the polymer interface, further enhancing the anion-enabled cation–polymer chelation. Besides opening the way for a full study of electrolyte doping mechanisms in operating devices, our results suggest that tailoring the electrolyte for different applications and materials might be a viable strategy to tune the performance of mixed conducting devices

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore