8 research outputs found
Micro-Raman Imaging of Isomeric Segregation in Small-Molecule Organic Semiconductors
Charge transport in organic semiconductors is highly sensitive to film heterogeneity and intermolecular interactions, but probing these properties on the length scales of disorder is often difficult. Here we use micro-Raman spectroscopy to assign vibrational modes of isomerically pure syn and anti 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES ADT) by comparing to density functional theory calculations. With polarization-dependent measurements, we determine the orientation of crystallites in pure isomers. In mixed-isomer samples, we observe narrow linewidths and superposition spectra, indicating coexistence of isomerically pure sub-domains on length scales smaller than the probe area. Using the ring breathing modes close to 1300âcmâ1 as indicators of the pure isomer crystalline sub-domains, we image their spatial distribution with 200-nm resolution. These results demonstrate the power of micro-Raman spectroscopy for investigating spatial heterogeneities and clarifying the origin of the reduced charge carrier mobility displayed in mixed-isomer diF-TES ADT
Computationally Aided Design of a High-Performance Organic Semiconductor: The Development of a Universal Crystal Engineering Core
Herein, we describe the design and synthesis of a suite of molecules based on a benzodithiophene âuniversal crystal engineering coreâ. After computationally screening derivatives, a trialkylsilylethyne-based crystal engineering strategy was employed to tailor the crystal packing for use as the active material in an organic field-effect transistor. Electronic structure calculations were undertaken to reveal derivatives that exhibit exceptional potential for high-efficiency hole transport. The promising theoretical properties are reflected in the preliminary device results, with the computationally optimized material showing simple solution processing, enhanced stability, and a maximum hole mobility of 1.6 cm2 Vâ1 sâ1
Decoupling the Influence of Poly(3,4âEthylenedioxythiophene)âCollagen Composite Characteristics on Cell Stemness
Abstract Conductive polymers (CPs) are widely studied for their ability to influence a myriad of tissue systems. While their mixed ionic/electronic conductivity is commonly considered the primary driver of these benefits, the mechanisms by which CPs influence cell fate remain unclear. In this study, CPâbiomaterial interactions are investigated using collagen, due to its widespread prevalence throughout the body and in tissue engineering constructs. Collagen is functionalized with both electrostatically and covalently bound derivatives of the CP poly(3,4âethylenedioxythiophene) (PEDOT) doped via backboneâtethered sulfonate groups, which enable high solubility and loading to the collagen biomatrix. Intrinsically doped scaffolds are compared to those incorporated with a commercially available PEDOT formulation, which is complexed with polyanionic polystyrene sulfonate (PSS). Low loadings of intrinsically doped PEDOT do not increase substrate conductivity compared to collagen alone, enabling separate investigation into CP loading and conductivity. Interestingly, higher PEDOT loading bolsters human mesenchymal stromal (hMSC) cell gene expression of Octâ4 and NANOG, which are key transcription factors regulating cell stemness. Conductive collagen composites with commercial PEDOT:PSS do not significantly affect the expression of these transcription factors in hMSCs. Furthermore, it is demonstrated that PEDOT regulates cellular fate independently from physical changes to the material but directly to the loading of the polymer
Ion Coordination and Chelation in a Glycolated Polymer Semiconductor: Molecular Dynamics and X-ray Fluorescence Study
Polythiophenes bearing glycolated side chains have rapidly surged as the highest performing materials for organic electrochemical transistors (OECTs) because of their ability to conjugate volumetric ion penetration with high hole mobility and charge density. Among them, p(g2T-TT) has one of the highest figures of merit. Our work provides an atomistic picture of the p(g2T-TT)âelectrolyte interface in the âoffâ state of an OECT, expected to be dominated by cationâpolymer interactions. Using a combination of molecular dynamics simulations and X-ray fluorescence, we show how different anions effectively tune the coordination and chelation of cations by p(g2T-TT). At the same time, softer and hydrophobic anions such as TFSIâ and ClO4â are found to preferentially interact with the p(g2T-TT) phase, further enhancing the polymerâcation chelation. We highlight how the stronger hydrophobic nature of TFSIâ causes its preferential accumulation at the polymer interface, further enhancing the anion-enabled cationâpolymer chelation. Besides opening the way for a full study of electrolyte doping mechanisms in operating devices, our results suggest that tailoring the electrolyte for different applications and materials might be a viable strategy to tune the performance of mixed conducting devices
Recommended from our members
Manipulating molecules with strong coupling: harvesting triplet excitons in organic exciton microcavities.
Exciton-polaritons are quasiparticles with mixed photon and exciton character that demonstrate rich quantum phenomena, novel optoelectronic devices and the potential to modify chemical properties of materials. Organic materials are of current interest as active materials for their ability to sustain exciton-polaritons even at room temperature. However, within organic optoelectronic devices, it is often the 'dark' spin-1 triplet excitons that dominate operation. These triplets have been largely ignored in treatments of polaritons, which instead only consider the role of states that directly and strongly interact with light. Here we demonstrate that these 'dark' states can also play a major role in polariton dynamics, observing polariton population transferred directly from the triplet manifold via triplet-triplet annihilation. The process leads to polariton emission that is longer-lived (>ÎŒs) even than exciton emission in bare films. This enhancement is directly linked to spin-2 triplet-pair states, which are formed in films and microcavities by singlet fission or triplet-triplet annihilation. Such high-spin multiexciton states are generally non-emissive and cannot directly couple to light, yet the formation of polaritons creates for them entirely new radiative decay pathways. This is possible due to weak mixing between singlet and triplet-pair manifolds, which - in the strong coupling regime - enables direct interaction between the bright polariton states and those that are formally non-emissive. Our observations offer the enticing possibility of using polaritons to harvest or manipulate population from states that are formally dark
Risk of COVID-19 after natural infection or vaccinationResearch in context
Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7â15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05â0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01â0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health