21 research outputs found

    Comprehensive compartmental model and calibration algorithm for the study of clinical implications of the population-level spread of COVID-19 : a study protocol

    Get PDF
    Introduction: The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions. Methods and analysis: We propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model’s predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states. Ethics and dissemination: Approved by Carleton University's Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Association Between Myocardial Injury and Cardiovascular Outcomes of Orthopaedic Surgery

    No full text
    BACKGROUND: Myocardial injury after noncardiac surgery (MINS) is common and of prognostic importance. Little is known about MINS in orthopaedic surgery. The diagnostic criterion for MINS was a level of ≥0.03 ng/mL on a non-high-sensitivity troponin T (TnT) assay due to myocardial ischemia. METHODS: We undertook an international, prospective study of 15,103 patients ≥45 years of age who had inpatient noncardiac surgery; 3,092 underwent orthopaedic surgery. Non-high-sensitivity TnT assays were performed on postoperative days 0, 1, 2, and 3. Among orthopaedic patients, we determined (1) the prognostic relevance of the MINS diagnostic criteria, (2) the 30-day mortality rate for those with and without MINS, and (3) the probable proportion of MINS cases that would go undetected without troponin monitoring because of a lack of an ischemic symptom. RESULTS: Three hundred and sixty-seven orthopaedic patients (11.9%) had MINS. MINS was associated independently with 30-day mortality including among those who had had orthopaedic surgery. Orthopaedic patients without and with MINS had a 30-day mortality rate of 1.0% and 9.8%, respectively (odds ratio [OR], 11.28; 95% confidence interval [CI], 6.72 to 18.92). The 30-day mortality rate was increased for patients with MINS who had an ischemic feature (i.e., symptoms, or evidence of ischemia on electrocardiography or imaging) (OR, 18.25; 95% CI, 10.06 to 33.10) and for those who did not have an ischemic feature (OR, 7.35; 95% CI, 3.37 to 16.01). The proportion of orthopaedic patients with MINS who were asymptomatic and in whom the myocardial injury would have probably gone undetected without TnT monitoring was 81.3% (95% CI, 76.3% to 85.4%). CONCLUSIONS: One in 8 orthopaedic patients in our study had MINS, and MINS was associated with a higher mortality rate regardless of symptoms. Troponin levels should be measured after surgery in at-risk patients because most MINS cases (>80%) are asymptomatic and would go undetected without routine measurements. LEVEL OF EVIDENCE: Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence

    Aspirin in patients undergoing noncardiac surgery

    No full text
    BACKGROUND: There is substantial variability in the perioperative administration of aspirin in patients undergoing noncardiac surgery, both among patients who are already on an aspirin regimen and among those who are not. METHODS: Using a 2-by-2 factorial trial design, we randomly assigned 10,010 patients who were preparing to undergo noncardiac surgery and were at risk for vascular complications to receive aspirin or placebo and clonidine or placebo. The results of the aspirin trial are reported here. The patients were stratified according to whether they had not been taking aspirin before the study (initiation stratum, with 5628 patients) or they were already on an aspirin regimen (continuation stratum, with 4382 patients). Patients started taking aspirin (at a dose of 200 mg) or placebo just before surgery and continued it daily (at a dose of 100 mg) for 30 days in the initiation stratum and for 7 days in the continuation stratum, after which patients resumed their regular aspirin regimen. The primary outcome was a composite of death or nonfatal myocardial infarction at 30 days. RESULTS: The primary outcome occurred in 351 of 4998 patients (7.0%) in the aspirin group and in 355 of 5012 patients (7.1%) in the placebo group (hazard ratio in the aspirin group, 0.99; 95% confidence interval [CI], 0.86 to 1.15; P=0.92). Major bleeding was more common in the aspirin group than in the placebo group (230 patients [4.6%] vs. 188 patients [3.8%]; hazard ratio, 1.23; 95% CI, 1.01, to 1.49; P=0.04). The primary and secondary outcome results were similar in the two aspirin strata. CONCLUSIONS: Administration of aspirin before surgery and throughout the early postsurgical period had no significant effect on the rate of a composite of death or nonfatal myocardial infarction but increased the risk of major bleeding. (Funded by the Canadian Institutes of Health Research and others; POISE-2 ClinicalTrials.gov number, NCT01082874.)
    corecore