1,565 research outputs found

    The use of aerial- and close-range photogrammetry for the mapping of the Lavini di Marco tracksite (Hettangian, Southern Alps, NE Italy)

    Get PDF
    (EXCERPT FROM ABSTRACT) Close-range photogrammetry was executed following the procedure proposed by Mallison & Wings (2014). More than seventy 3D models were obtained and interpreted by means of color-coded and contour line images, which allow to improve the ichno- logical knowledge of the tracksite. The 3D models of the best-preserved tracks were used for the osteological reconstruction of the trackmakers’ autopodia, supposing the arthral position of the phalangeal pads. Three indirect methods were used to correlate tracks and their trackmakers: (i) synapomorphy-based approach; (ii) phenetic correlation; (iii) coincidence correlation (see Carrano & Wilson, 2001) The final map was produced with different level of knowledge due to the distribution of tracks and current state of site preservation. Furthermore, it represents a complete documentation that will be used for future work of enhancement, preservation and valorization of the tracksite. The ichnotaxonomical review of the quadrupedal trackways led us to emend the diagnosis of Lavinipes cheminii Avanzini et al. (2003) and to assign several other sparse tracks and trackways to L. chemini. The skeletal reconstruction of fore and hind limbs points towards Gongxianosaurus sp. as the most suitable trackmaker of L. cheminii. The herein supposed Laurasian affinity of the Lavini di Marco dinosaur assemblage clashes with the previous hypotheses that always link the Southern Alps sector with the Gondwana mainland

    Thermochemical scanning probe lithography of protein gradients at the nanoscale

    Get PDF
    Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro

    Phase Nanoengineering via Thermal Scanning Probe Lithography and Direct Laser Writing

    Get PDF
    Nanomaterials derive their electronic, magnetic, and optical properties from their specific nanostructure. In most cases, nanostructured materials and their properties are defined during the materials growth, and nanofabrication techniques, such as lithography, are employed subsequently for device fabrication. Herein, a perspective is presented on a different approach for creating nanomaterials and devices where, after growth, advanced nanofabrication techniques are used to directly nanostructure condensed matter systems, by inducing highly controlled, localized, and stable changes in the electronic, magnetic, or optical properties. Then, advantages, limitations, applications in materials science and technology are highlighted, and future perspectives are discussed
    • …
    corecore