1,367 research outputs found

    Towards an on-chip platform for the controlled application of forces via magnetic particles: A novel device for mechanobiology

    Get PDF
    In-vitro tests and analyses are of fundamental importance for investigating biological mechanisms in cells and bio-molecules. The controlled application of forces to activate specific bio-pathways and investigate their effects, mimicking the role of the cellular environment, is becoming a prominent approach in this field. In this work, we present a non-invasive magnetic on-chip platform which allows for the manipulation of magnetic particles, through micrometric magnetic conduits of Permalloy patterned on-chip. We show, from simulations and experiments, that this technology permits to exert a finely controlled force on magnetic beads along the chip surface. This force can be tuned from few to hundreds pN by applying a variable external magnetic field

    Volterra Distortions, Spinning Strings, and Cosmic Defects

    Get PDF
    Cosmic strings, as topological spacetime defects, show striking resemblance to defects in solid continua: distortions, which can be classified into disclinations and dislocations, are line-like defects characterized by a delta function-valued curvature and torsion distribution giving rise to rotational and translational holonomy. We exploit this analogy and investigate how distortions can be adapted in a systematic manner from solid state systems to Einstein-Cartan gravity. As distortions are efficiently described within the framework of a SO(3) {\rlap{\supset}\times}} T(3) gauge theory of solid continua with line defects, we are led in a straightforward way to a Poincar\'e gauge approach to gravity which is a natural framework for introducing the notion of distorted spacetimes. Constructing all ten possible distorted spacetimes, we recover, inter alia, the well-known exterior spacetime of a spin-polarized cosmic string as a special case of such a geometry. In a second step, we search for matter distributions which, in Einstein-Cartan gravity, act as sources of distorted spacetimes. The resulting solutions, appropriately matched to the distorted vacua, are cylindrically symmetric and are interpreted as spin-polarized cosmic strings and cosmic dislocations.Comment: 24 pages, LaTeX, 9 eps figures; remarks on energy conditions added, discussion extended, version to be published in Class. Quantum Gra

    Deformed General Relativity and Torsion

    Get PDF
    We argue that the natural framework for embedding the ideas of deformed, or doubly, special relativity (DSR) into a curved spacetime is a generalisation of Einstein-Cartan theory, considered by Stelle and West. Instead of interpreting the noncommuting "spacetime coordinates" of the Snyder algebra as endowing spacetime with a fundamentally noncommutative structure, we are led to consider a connection with torsion in this framework. This may lead to the usual ambiguities in minimal coupling. We note that observable violations of charge conservation induced by torsion should happen on a time scale of 10^3 s, which seems to rule out these modifications as a serious theory. Our considerations show, however, that the noncommutativity of translations in the Snyder algebra need not correspond to noncommutative spacetime in the usual sense.Comment: 20 pages, 1 figure, revtex; expanded sections 3 and 4 for clarity, moved material to appendix B, corrected a few minor error

    Towards a magnetoresistive platform for neural signal recording

    Get PDF
    A promising strategy to get deeper insight on brain functionalities relies on the investigation of neural activities at the cellular and sub-cellular level. In this framework, methods for recording neuron electrical activity have gained interest over the years. Main technological challenges are associated to finding highly sensitive detection schemes, providing considerable spatial and temporal resolution. Moreover, the possibility to perform non-invasive assays would constitute a noteworthy benefit. In this work, we present a magnetoresistive platform for the detection of the action potential propagation in neural cells. Such platform allows, in perspective, the in vitro recording of neural signals arising from single neurons, neural networks and brain slices

    Quantum oscillations of nitrogen atoms in uranium nitride

    Full text link
    The vibrational excitations of crystalline solids corresponding to acoustic or optic one phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak, and featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride (UN), showing well-defined, equally-spaced, high energy vibrational modes in addition to the usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator and characterizes independent motions of light nitrogen atoms, each found in an octahedral cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization of one of the fundamental, exactly-solvable problems in quantum mechanics. There are also practical implications, as the oscillator modes must be accounted for in the design of generation IV nuclear reactors that plan to use UN as a fuel.Comment: 25 pages, 10 figures, submitted to Nature Communications, supplementary information adde
    • …
    corecore