5,478 research outputs found

    Wong-Zakai approximation of solutions to reflecting stochastic differential equations on domains in Euclidean spaces II

    Full text link
    The strong convergence of Wong-Zakai approximations of the solution to the reflecting stochastic differential equations was studied in [2]. We continue the study and prove the strong convergence under weaker assumptions on the domain.Comment: To appear in "Stochastic Analysis and Applications 2014-In Honour of Terry Lyons", Springer Proceedings in Mathematics and Statistic

    Uncertainty quantification for kinetic models in socio-economic and life sciences

    Full text link
    Kinetic equations play a major rule in modeling large systems of interacting particles. Recently the legacy of classical kinetic theory found novel applications in socio-economic and life sciences, where processes characterized by large groups of agents exhibit spontaneous emergence of social structures. Well-known examples are the formation of clusters in opinion dynamics, the appearance of inequalities in wealth distributions, flocking and milling behaviors in swarming models, synchronization phenomena in biological systems and lane formation in pedestrian traffic. The construction of kinetic models describing the above processes, however, has to face the difficulty of the lack of fundamental principles since physical forces are replaced by empirical social forces. These empirical forces are typically constructed with the aim to reproduce qualitatively the observed system behaviors, like the emergence of social structures, and are at best known in terms of statistical information of the modeling parameters. For this reason the presence of random inputs characterizing the parameters uncertainty should be considered as an essential feature in the modeling process. In this survey we introduce several examples of such kinetic models, that are mathematically described by nonlinear Vlasov and Fokker--Planck equations, and present different numerical approaches for uncertainty quantification which preserve the main features of the kinetic solution.Comment: To appear in "Uncertainty Quantification for Hyperbolic and Kinetic Equations

    Measurement of proton electromagnetic form factors in e+e−→ppˉe^+e^- \to p\bar{p} in the energy region 2.00-3.08 GeV

    Full text link
    The process of e+e−→ppˉe^+e^- \rightarrow p\bar{p} is studied at 22 center-of-mass energy points (s\sqrt{s}) from 2.00 to 3.08 GeV, exploiting 688.5~pb−1^{-1} of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section~(σppˉ\sigma_{p\bar{p}}) of e+e−→ppˉe^+e^- \rightarrow p\bar{p} is measured with the energy-scan technique and it is found to be consistent with previously published data, but with much improved accuracy. In addition, the electromagnetic form-factor ratio (∣GE/GM∣|G_{E}/G_{M}|) and the value of the effective (∣Geff∣|G_{\rm{eff}}|), electric (∣GE∣|G_E|) and magnetic (∣GM∣|G_M|) form factors are measured by studying the helicity angle of the proton at 16 center-of-mass energy points. ∣GE/GM∣|G_{E}/G_{M}| and ∣GM∣|G_M| are determined with high accuracy, providing uncertainties comparable to data in the space-like region, and ∣GE∣|G_E| is measured for the first time. We reach unprecedented accuracy, and precision results in the time-like region provide information to improve our understanding of the proton inner structure and to test theoretical models which depend on non-perturbative Quantum Chromodynamics

    Numerical analysis of the radio-frequency single-electron transistor operation

    Full text link
    We have analyzed numerically the response and noise-limited charge sensitivity of a radio-frequency single-electron transistor (RF-SET) in a non-superconducting state using the orthodox theory. In particular, we have studied the performance dependence on the quality factor Q of the tank circuit for Q both below and above the value corresponding to the impedance matching between the coaxial cable and SET.Comment: 14 page

    Study of J/ψJ/\psi and ψ(3686)→Σ(1385)0Σˉ(1385)0\psi(3686)\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0}

    Full text link
    We study the decays of J/ψJ/\psi and ψ(3686)\psi(3686) to the final states Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0} based on a single baryon tag method using data samples of (1310.6±7.0)×106(1310.6 \pm 7.0) \times 10^{6} J/ψJ/\psi and (447.9±2.9)×106(447.9 \pm 2.9) \times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} are observed for the first time. The measured branching fractions of J/ψJ/\psi and ψ(3686)→Ξ0Ξˉ0\psi(3686)\rightarrow\Xi^0\bar\Xi^{0} are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψ→Σ(1385)0Σˉ(1385)0J/\psi\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0}, α=−0.64±0.03±0.10\alpha =-0.64 \pm 0.03 \pm 0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψJ/\psi and ψ(3686)→ΞΞˉ\psi(3686)\rightarrow\Xi\bar\Xi and Σ(1385)Σˉ(1385)\Sigma(1385)\bar{\Sigma}(1385) systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published in Phys.Lett. B770 (2017) 217-22

    Observation of Ds+→pnˉD^+_s\rightarrow p\bar{n} and confirmation of its large branching fraction

    Full text link
    The baryonic decay Ds+→pnˉD^+_s\rightarrow p\bar{n} is observed, and the corresponding branching fraction is measured to be (1.21±0.10±0.05)×10−3(1.21\pm0.10\pm0.05)\times10^{-3}, where the first uncertainty is statistical and second systematic. The data sample used in this analysis was collected with the BESIII detector operating at the BEPCII e+e−e^+e^- double-ring collider with a center-of-mass energy of 4.178~GeV and an integrated luminosity of 3.19~fb−1^{-1}. The result confirms the previous measurement by the CLEO Collaboration and is of greatly improved precision, which may deepen our understanding of the dynamical enhancement of the W-annihilation topology in the charmed meson decays

    Search for the decay J/ψ→γ+invisibleJ/\psi\to\gamma + \rm {invisible}

    Full text link
    We search for J/ψJ/\psi radiative decays into a weakly interacting neutral particle, namely an invisible particle, using the J/ψJ/\psi produced through the process ψ(3686)→π+π−J/ψ\psi(3686)\to\pi^+\pi^-J/\psi in a data sample of (448.1±2.9)×106(448.1\pm2.9)\times 10^6 ψ(3686)\psi(3686) decays collected by the BESIII detector at BEPCII. No significant signal is observed. Using a modified frequentist method, upper limits on the branching fractions are set under different assumptions of invisible particle masses up to 1.2  GeV/c2\mathrm{\ Ge\kern -0.1em V}/c^2. The upper limit corresponding to an invisible particle with zero mass is 7.0×10−7\times 10^{-7} at the 90\% confidence level

    Observation and study of the decay J/ψ→ϕηη′J/\psi\rightarrow\phi\eta\eta'

    Get PDF
    We report the observation and study of the decay J/ψ→ϕηη′J/\psi\rightarrow\phi\eta\eta' using 1.3×1091.3\times{10^9} J/ψJ/\psi events collected with the BESIII detector. Its branching fraction, including all possible intermediate states, is measured to be (2.32±0.06±0.16)×10−4(2.32\pm0.06\pm0.16)\times{10^{-4}}. We also report evidence for a structure, denoted as XX, in the ϕη′\phi\eta' mass spectrum in the 2.0−2.12.0-2.1 GeV/c2c^2 region. Using two decay modes of the η′\eta' meson (γπ+π−\gamma\pi^+\pi^- and ηπ+π−\eta\pi^+\pi^-), a simultaneous fit to the ϕη′\phi\eta' mass spectra is performed. Assuming the quantum numbers of the XX to be JP=1−J^P = 1^-, its significance is found to be 4.4σ\sigma, with a mass and width of (2002.1±27.5±21.4)(2002.1 \pm 27.5 \pm 21.4) MeV/c2c^2 and (129±17±9)(129 \pm 17 \pm 9) MeV, respectively, and a product branching fraction B(J/ψ→ηX)×B(X→ϕη′)=(9.8±1.2±1.7)×10−5\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.8 \pm 1.2 \pm 1.7)\times10^{-5}. Alternatively, assuming JP=1+J^P = 1^+, the significance is 3.8σ\sigma, with a mass and width of (2062.8±13.1±7.2)(2062.8 \pm 13.1 \pm 7.2) MeV/c2c^2 and (177±36±35)(177 \pm 36 \pm 35) MeV, respectively, and a product branching fraction B(J/ψ→ηX)×B(X→ϕη′)=(9.6±1.4±2.0)×10−5\mathcal{B}(J/\psi\rightarrow\eta{}X)\times{}\mathcal{B}(X\rightarrow\phi\eta')=(9.6 \pm 1.4 \pm 2.0)\times10^{-5}. The angular distribution of J/ψ→ηXJ/\psi\rightarrow\eta{}X is studied and the two JPJ^P assumptions of the XX cannot be clearly distinguished due to the limited statistics. In all measurements the first uncertainties are statistical and the second systematic.Comment: 10 pages, 6 figures and 4 table

    First observations of hc→h_c \to hadrons

    Get PDF
    Based on (4.48±0.03)×108(4.48 \pm 0.03) \times 10^{8} ψ(3686)\psi(3686) events collected with the BESIII detector, five hch_c hadronic decays are searched for via process ψ(3686)→π0hc\psi(3686) \to \pi^0 h_c. Three of them, hc→ppˉπ+π−h_c \to p \bar{p} \pi^+ \pi^-, π+π−π0\pi^+ \pi^- \pi^0, and 2(π+π−)π02(\pi^+ \pi^-) \pi^0 are observed for the first time, with statistical significances of 7.4σ\sigma, 4.9σ4.9\sigma, and 9.1σ\sigma, and branching fractions of (2.89±0.32±0.55)×10−3(2.89\pm0.32\pm0.55)\times10^{-3}, (1.60±0.40±0.32)×10−3(1.60\pm0.40\pm0.32)\times10^{-3}, and (7.44±0.94±1.56)×10−3(7.44\pm0.94\pm1.56)\times10^{-3}, respectively, where the first uncertainties are statistical and the second systematic. No significant signal is observed for the other two decay modes, and the corresponding upper limits of the branching fractions are determined to be B(hc→3(π+π−)π0)<8.7×10−3B(h_c \to 3(\pi^+ \pi^-) \pi^0)<8.7\times10^{-3} and B(hc→K+K−π+π−)<5.8×10−4B(h_c \to K^+ K^- \pi^+ \pi^-)<5.8\times10^{-4} at 90% confidence level.Comment: 17 pages, 16 figure
    • …
    corecore