1,587 research outputs found

    Flopping-mode electric dipole spin resonance

    Full text link
    Traditional approaches to controlling single spins in quantum dots require the generation of large electromagnetic fields to drive many Rabi oscillations within the spin coherence time. We demonstrate "flopping-mode" electric dipole spin resonance, where an electron is electrically driven in a Si/SiGe double quantum dot in the presence of a large magnetic field gradient. At zero detuning, charge delocalization across the double quantum dot enhances coupling to the drive field and enables low power electric dipole spin resonance. Through dispersive measurements of the single electron spin state, we demonstrate a nearly three order of magnitude improvement in driving efficiency using flopping-mode resonance, which should facilitate low power spin control in quantum dot arrays

    Controlled MOCVD growth of Bi2Se3 topological insulator nanoribbons

    Full text link
    Topological insulators are a new class of materials that support topologically protected electronic surface states. Potential applications of the surface states in low dissipation electronic devices have motivated efforts to create nanoscale samples with large surface-to-volume ratios and highly controlled stoichiometry. Se vacancies in Bi2Se3 give rise to bulk conduction, which masks the transport properties of the surface states. We have therefore developed a new route for the synthesis of topological insulator nanostructures using metalorganic chemical vapour deposition (MOCVD). MOCVD allows for control of the Se/Bi flux ratio during growth. With the aim of rational growth, we vary the Se/Bi flux ratio, growth time, and substrate temperature, and observe morphological changes which indicate a growth regime in which nanoribbon formation is limited by the Bi precursor mass-flow. MOCVD growth of Bi2Se3 nanostructures occurs via a distinct growth mechanism that is nucleated by gold nanoparticles at the base of the nanowire. By tuning the reaction conditions, we obtain either single-crystalline ribbons up to 10 microns long or thin micron-sized platelets.Comment: Related papers at http://pettagroup.princeton.ed

    Pharmacological therapy of non-alcoholic fatty liver disease: What drugs are available now and future perspectives

    Get PDF
    The non-alcoholic fatty liver disease (NAFLD) is rapidly becoming the most common cause of chronic liver disease as well as the first cause of liver transplantation. NAFLD is commonly associated with metabolic syndrome (MetS), and this is the most important reason why it is extremely difficult to treat this disease bearing in mind the enormous amount of interrelationships between the liver and other systems in maintaining the metabolic health. The treatment of NAFLD is a key point to prevent NASH progression to advanced fibrosis, to prevent cirrhosis and to prevent the development of its hepatic complications (such as liver decompensation and HCC) and even extrahepatic one. A part of the well-known healthy effect of diet and physical exercise in this setting it is important to design the correct pharmaceutical strategy in order to antagonize the progression of the disease. In this regard, the current review has the scope to give a panoramic view on the possible pharmacological treatment strategy in NAFLD patients

    Bacterial biofilms on biopolymeric sorbent supports for environmental bioremediation

    Get PDF
    Bioremediation encompasses a broad range of environmental biotechnology, which require multidisciplinary approaches through implementation of innovative tools to the natural biological process occurring in soil, water and air. Immobilization of hydrocarbon-degrading microorganisms on biodegradable sorbent supports significantly promotes bioremediation processes. Recently ecofriendly, low cost bioremediation devices based on polylactic acid (PLA) and polycaprolactone (PCL) membranes hosting a biodegrading bacterial biofilms were obtained[1]. This work investigates the higher effectiveness of immobilizing hydrocarbon-degrading bacteria compared to that of planktonic cells. Soil hydrocarbon (HC) degrading Actinobacteria Nocardia cyriacigeorgica strain SoB, Gordonia amicalis strain SoCg[2], and the marine hydrocarbonoclastic Alcanivorax borkumensis strain AU3-AA-7[3] were immobilized on PLA and PCL membranes and tested on hexadecane. The capacity of adhesion and proliferation of these biodegrading biofilms within the biopolymers were evaluated at various time points (5, 10, 15, and 30 incubation days) using scanning electron microscopy (SEM). The SEM images revealed that PLA and PCL nanofibers were nearly completely covered by a complex three-dimensional bacterial film for all tested strains. Quantification of total biomass (estimated as total dsDNA) confirmed biofilm growth up to 30 days of incubation. Crude oil biodegradation ability of biofilms-membranes systems, assessed by Gas Chromatography-FID analysis, demonstrated the removal of over 60% of the oil after 5 days of incubation, outperforming free-living bacteria by 24%. Viable plate counts showed that bacterial biofilms adsorbed on biopolymers were still viable after 30 days, indicating their potential for long-term applications

    Circuit Quantum Electrodynamics with a Spin Qubit

    Full text link
    Circuit quantum electrodynamics allows spatially separated superconducting qubits to interact via a "quantum bus", enabling two-qubit entanglement and the implementation of simple quantum algorithms. We combine the circuit quantum electrodynamics architecture with spin qubits by coupling an InAs nanowire double quantum dot to a superconducting cavity. We drive single spin rotations using electric dipole spin resonance and demonstrate that photons trapped in the cavity are sensitive to single spin dynamics. The hybrid quantum system allows measurements of the spin lifetime and the observation of coherent spin rotations. Our results demonstrate that a spin-cavity coupling strength of 1 MHz is feasible.Comment: Related papers at http://pettagroup.princeton.edu
    • …
    corecore