111 research outputs found

    Immunohistochemical techniques and their applications in the histopathology of the respiratory system.

    Get PDF
    Subsequent to the first report in the 1940s on incubation of tissue sections with fluorescein-conjugated antibodies for localization of antigens, a great number of modifications were introduced to improve the validity of immunohistochemistry which has become a growingly popular tool. The use of immunoenzymatic techniques eliminates the need for expensive fluorescence microscopy equipment, the lack of permanency of preparations and the lack of electron density required in ultrastructural localization of antigens. Regardless of the technique, it is also important to choose a correct fixation which allows the proper preservation of antigens and morphology and the penetration of antibodies through the entire thickness of the preparation. A variety of immunohistochemical techniques have been applied to study several components of the lung, such as collagen, surface active material, lung specific antigens, and enzymes and the detection of tumor markers, immunoglobulins and infectious agents in the respiratory system which is reviewed. The large surface area and the multiplicity of cell types provided by the respiratory tract epithelium of humans for exposure to microbial as well as toxic substances in the environment make this organ system very vulnerable but a good early indicator of adverse health effects. Immunohistochemistry provides valuable information complementary to the immunochemical and biochemical characterization of this barrier

    Preferential immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in the sacral spinal cord of the cat: light and electron microscopic observations

    Get PDF
    In the present study we have employed immunoperoxidase techniques to investigate the distribution of vasoactive intestinal polypeptide (VIP)- like immunoreactivity in the spinal cord and sensory ganglia of the cat. The spinal distribution of VIP-containing neuronal processes was also compared with that of substance P (SP), somatostatin (SOM), and cholecystokinin-8 (CCK) at lumbar, sacral, and coccygeal levels. At sacral levels, VIP was found to be contained in small and medium-sized primary sensory neurons and in dorsal rootlets. Deafferentation, by either ganglionectomy or dorsal rhizotomy, resulted in a nearly complete loss of VIP immunoreactivity in the spinal cord. The spinal distribution of VIP fibers and terminals was most dense and extensive in sacral segments. Forming a thin shell around the dorsal horn, collaterals, apparently originating from Lissauer's tract, projected either medially or laterally through lamina I. Laterally, many VIP axons terminated in lateral laminae V to VII. Others projected further through the neck of the dorsal horn to medial lamina V and the gray matter near the central canal. Medially, VIP axons descended through lamina I to expand into terminal fields in the posterior commissure and medial lamina V. At the ultrastructural level, VIP-like immunoreactivity was found in dense core vesicles within axonal enlargements containing both large dense core and smaller clear round vesicles. Synaptic connections were infrequently observed but, when encountered, were of the simple axodendritic type. The spinal distribution of VIP-containing fibers was remarkably similar to that reported for pelvic nerve visceral afferents, both in termination patterns within the spinal gray matter and in localization to the sacral cord. The density of SP-, SOM-, and CCK-containing fibers and terminals was constant at all levels examined (L4 to Co4). In marked contrast, the distribution of VIP fibers, much like that of pelvic nerve afferents, was mostly confined to sacral segments. Thus, although SP, SOM, and CCK may be contained within a population of sacral visceral afferents, they must be common to afferent systems in other segments as well. VIP, however, appears to be preferentially contained within pelvic visceral afferent fibers confined mostly to sacral segments

    Glutamate-positive neurons in the somatic sensory cortex of rats and monkeys

    Get PDF
    The morphology and laminar distribution of neurons labeled with an antiserum prepared against glutamic acid (Glu) conjugated to keyhole limpet hemocyanin have been studied in the somatic sensory cortex of rats and monkeys. In both species, the vast majority of immunostained neurons are pyramidal; some nonpyramidal neurons are also present. Positive neurons are observed in all cortical layers, although variations are found in the percentage of Glu-positive neurons in the different layers. In rats they are most numerous in layer V (36%), followed by layer II (33%), layer III (32%), and layer VI (29%). In layer IV, 13% of all neurons are positive. Immunoreactive neurons are very sparse in layer I. In monkeys, Glu-positive neurons represent 51% of all neurons in layer V, 49% in layer III, 40% in layers II and VI, and 19% in layer IV. No differences are evident in the laminar distribution of Glu-positive neurons among cytoarchitectonic areas 3a, 3b, 1, and 2. As in rats, Glu-positive neurons are very sparse in layer I. Since Glu and GABA metabolisms are closely related, double-labeling experiments were performed in which thin, adjacent paraffin sections were stained alternately with the anti-Glu serum and with an anti-GABA serum. The 2 populations are almost completely segregated, even though a small fraction of neurons (less than 5%) are labeled by the antisera against both antigens.(ABSTRACT TRUNCATED AT 250 WORDS

    Localization of androgen-binding protein in proliferating Sertoli cells in culture.

    Get PDF
    The peroxidase and immunofluorescent localization patterns of androgen-binding protein (ABP), a biological marker of Sertoli cell function, have been examined in cultured Sertoli cells isolated from 20- to 22-day-old rats. ABP immunoreactivity in the form of cytoplasmic granules of variable diameter was observed in Sertoli cells with characteristic lipid droplets and a colony-forming, epithelial-like growth pattern. Incubation of cultures with [3H]thymidine demonstrated that Sertoli cells continue to produce ABP while retaining their capability for synthesizing DNA and undergoing mitosis. A variable number of cultured Sertoli cells became morphologically transformed after exposure to follitropin (follicle-stimulating hormone) and pharmacological agents acting on cyclic nucleotide metabolism. The induced change in Sertoli cell shape coincided with a disappearance of ABP-containing granules from the cytoplasm. These observations demonstrate that localization of ABP by immunological techniques is a valuable tool for the characterization of structural and functional properties of Sertoli cell in culture

    Androgen-binding protein. Purification from rat epididymis, characterization, and immunocytochemical localization.

    Get PDF
    Androgen-binding protein (ABP) was purified from caput epididymis of the rat by sequential chromatography on DEAE-Sepharose, hydroxylapatite, dihydrotestosterone-17 beta-hemisuccinyl-1,6-diaminohexane-Sepharose, and Sephadex G-150. The final product migrated as a single band corresponding to a peak of protein-bound [3H]dihydrotestosterone on polyacrylamide gel electrophoresis. A molecular weight of 100,000 was estimated by sedimentation equilibrium. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, subunits of Mr = 47,000 and 41,000 were observed. Amino acid analysis indicated ABP to be rich in leucine while nonpolar aminoacids totaled only 51%. Its carbohydrate content is 25%. Antibodies to purified ABP were raised in a rabbit and evaluated by immunodiffusion, immunoelectrophoresis, binding inhibition, radioimmunoassay, and immunocytochemistry. Immunoperoxidase staining localized ABP in the basal and adluminal regions of seminiferous tubules of rat testis and in secretory granules of cultured Sertoli cells. In principal cells of caput epididymis, ABP is concentrated in the supranuclear region known to contain morphological specializations for absorption. These immunocytochemical results confirm that ABP synthesized and secreted by Sertoli cells in the testis is transported to the epididymal duct via testicular fluid and is taken up by epithelial cells of the proximal segments

    Primate epididymis-specific proteins: characterization of ESC42, a novel protein containing a trefoil-like motif in monkey and human

    Get PDF
    Epididymal secreted proteins promote sperm maturation and fertilizing capacity by interacting with sperm during passage through the epididymis. Here we investigate the molecular basis of sperm maturation by isolating cDNA clones for novel epididymis-specific expressed sequences. Thirty-six novel cDNAs were isolated and sequenced from a subtracted Macaca mulatta epididymis library. The clones encode proteins with a range of motifs characteristic of protein-modifying enzymes, protease inhibitors, hydrophobic ligand-binding and transport proteins, extracellular matrix-interacting proteins, and transcription regulatory factors. The full length coding sequences were obtained for 11 clones representing a range of abundance levels. Expression of each is regionally localized and androgen regulated. The most abundant, ESC42, contains a cysteine-rich region similar to the signature binding domain of the trefoil family of motogenic wound repair proteins. The monkey and human proteins are nearly 90% identical. Immunohistochemical staining revealed that the protein is most abundant in the epithelium of the caput and is also present in the lumen and bound to sperm. The ESC42 gene, located on chromosome 20q11, contains two exons encoding two nearly identical predicted signal peptides and a third exon encoding the rest of the protein

    Localization of androgen-binding protein in proliferating Sertoli cells in culture.

    Get PDF
    The peroxidase and immunofluorescent localization patterns of androgen-binding protein (ABP), a biological marker of Sertoli cell function, have been examined in cultured Sertoli cells isolated from 20- to 22-day-old rats. ABP immunoreactivity in the form of cytoplasmic granules of variable diameter was observed in Sertoli cells with characteristic lipid droplets and a colony-forming, epithelial-like growth pattern. Incubation of cultures with [3H]thymidine demonstrated that Sertoli cells continue to produce ABP while retaining their capability for synthesizing DNA and undergoing mitosis. A variable number of cultured Sertoli cells became morphologically transformed after exposure to follitropin (follicle-stimulating hormone) and pharmacological agents acting on cyclic nucleotide metabolism. The induced change in Sertoli cell shape coincided with a disappearance of ABP-containing granules from the cytoplasm. These observations demonstrate that localization of ABP by immunological techniques is a valuable tool for the characterization of structural and functional properties of Sertoli cell in culture

    LCN6, a novel human epididymal lipocalin

    Get PDF
    BACKGROUND: The lipocalin (LCN) family of structurally conserved hydrophobic ligand binding proteins is represented in all major taxonomic groups from prokaryotes to primates. The importance of lipocalins in reproduction and the similarity to known epididymal lipocalins prompted us to characterize the novel human epididymal LCN6. METHODS AND RESULTS: LCN6 cDNA was identified by database analysis in a comprehensive human library sequencing program. Macaca mulatta (rhesus monkey) cDNA was obtained from an epididymis cDNA library and is 93% homologous to the human. The gene is located on chromosome 9q34 adjacent LCN8 and LCN5. LCN6 amino acid sequence is most closely related to LCN5, but the LCN6 beta-barrel structure is best modeled on mouse major urinary protein 1, a pheromone binding protein. Northern blot analysis of RNAs isolated from 25 human tissues revealed predominant expression of a 1.0 kb mRNA in the epididymis. No other transcript was detected except for weak expression of a larger hybridizing mRNA in urinary bladder. Northern hybridization analysis of LCN6 mRNA expression in sham-operated, castrated and testosterone replaced rhesus monkeys suggests mRNA levels are little affected 6 days after castration. Immunohistochemical staining revealed that LCN6 protein is abundant in the caput epithelium and lumen. Immunofluorescent staining of human spermatozoa shows LCN6 located on the head and tail of spermatozoa with the highest concentration of LCN6 on the post-acrosomal region of the head, where it appeared aggregated into large patches. CONCLUSIONS: LCN6 is a novel lipocalin closely related to Lcn5 and Lcn8 and these three genes are likely products of gene duplication events that predate rodent-primate divergence. Predominant expression in the epididymis and location on sperm surface are consistent with a role for LCN6 in male fertility

    Analysis of gene expression profiles in HeLa cells in response to overexpression or siRNA-mediated depletion of NASP

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>NASP (Nuclear Autoantigenic Sperm Protein) is a linker histone chaperone required for normal cell division. Changes in NASP expression significantly affect cell growth and development; loss of gene function results in embryonic lethality. However, the mechanism by which NASP exerts its effects in the cell cycle is not understood. To understand the pathways and networks that may involve NASP function, we evaluated gene expression in HeLa cells in which NASP was either overexpressed or depleted by siRNA.</p> <p>Methods</p> <p>Total RNA from HeLa cells overexpressing NASP or depleted of NASP by siRNA treatment was converted to cRNA with incorporation of Cy5-CTP (experimental samples), or Cy3-CTP (control samples). The labeled cRNA samples were hybridized to whole human genome microarrays (Agilent Technologies, Wilmington, Delaware, USA). Various gene expression analysis techniques were employed: Significance Analysis of Microarrays (SAM), Expression Analysis Systematic Explorer (EASE), and Ingenuity Pathways Analysis (IPA).</p> <p>Results</p> <p>From approximately 36 thousand genes present in a total human genome microarray, we identified a set of 47 up-regulated and 7 down-regulated genes as a result of NASP overexpression. Similarly we identified a set of 56 up-regulated and 71 down-regulated genes as a result of NASP siRNA treatment. Gene ontology, molecular network and canonical pathway analysis of NASP overexpression demonstrated that the most significant changes were in proteins participating in organismal injury, immune response, and cellular growth and cancer pathways (major "hubs": TNF, FOS, EGR1, NFκB, IRF7, STAT1, IL6). Depletion of NASP elicited the changed expression of proteins involved in DNA replication, repair and development, followed by reproductive system disease, and cancer and cell cycle pathways (major "hubs": E2F8, TP53, FGF, FSH, FST, hCG, NFκB, TRAF6).</p> <p>Conclusion</p> <p>This study has demonstrated that NASP belongs to a network of genes and gene functions that are critical for cell survival. We have confirmed the previously reported interactions between NASP and HSP90, HSP70, histone H1, histone H3, and TRAF6. Overexpression and depletion of NASP identified overlapping networks that included TNF as a core protein, confirming that both high and low levels of NASP are detrimental to cell cycle progression. Networks with cancer-related functions had the highest significance, however reproductive networks containing follistatin and FSH were also significantly affected, which confirmed NASP's important role in reproductive tissues. This study revealed that, despite some overlap, each response was associated with a unique gene signature and placed NASP in important cell regulatory networks.</p
    • …
    corecore