37 research outputs found

    Challenges in solving structures from radiation-damaged tomograms of protein nanocrystals assessed by simulation

    Get PDF
    Structure determination methods are needed to resolve the atomic details that underlie protein function. X-ray crystallography has provided most of our knowledge of protein structure but is constrained by the need for large, well-ordered crystals and the loss of phase information. The rapidly developing methods of serial femtosecond crystallography, micro-electron diffraction, and single-particle reconstruction circumvent the first of these limitations by enabling data collection from nanocrystals or purified proteins. However, the first two methods also suffer from the phase problem, while many proteins fall below the molecular weight threshold required by single-particle reconstruction. Cryo-electron tomography of protein nanocrystals has the potential to overcome these obstacles of mainstream structure determination methods. Here we present a data processing scheme that combines routines from X-ray crystallography and new algorithms we developed to solve structures from tomograms of nanocrystals. This pipeline handles image processing challenges specific to tomographic sampling of periodic specimens and is validated using simulated crystals. We also assess the tolerance of this workflow to the effects of radiation damage. Our simulations indicate a trade-off between a wider tilt-range to facilitate merging data from multiple tomograms and a smaller tilt increment to improve phase accuracy. Since phase errors but not merging errors can be overcome with additional datasets, these results recommend distributing the dose over a wide angular range rather than using a finer sampling interval to solve the protein structure

    Automated Structure Solution with the PHENIX Suite

    No full text

    Operational properties of fluctuation X-ray scattering data

    No full text
    X-ray scattering images collected on timescales shorter than rotation diffusion times using a (partially) coherent beam result in a significant increase in information content in the scattered data. These measurements, named fluctuation X-ray scattering (FXS), are typically performed on an X-ray free-electron laser (XFEL) and can provide fundamental insights into the structure of biological molecules, engineered nanoparticles or energy-related mesoscopic materials beyond what can be obtained with standard X-ray scattering techniques. In order to understand, use and validate experimental FXS data, the availability of basic data characteristics and operational properties is essential, but has been absent up to this point. In this communication, an intuitive view of the nature of FXS data and their properties is provided, the effect of FXS data on the derived structural models is highlighted, and generalizations of the Guinier and Porod laws that can ultimately be used to plan experiments and assess the quality of experimental data are presented

    A comparison of deep-learning-based inpainting techniques for experimental X-ray scattering.

    No full text
    The implementation is proposed of image inpainting techniques for the reconstruction of gaps in experimental X-ray scattering data. The proposed methods use deep learning neural network architectures, such as convolutional autoencoders, tunable U-Nets, partial convolution neural networks and mixed-scale dense networks, to reconstruct the missing information in experimental scattering images. In particular, the recovered pixel intensities are evaluated against their corresponding ground-truth values using the mean absolute error and the correlation coefficient metrics. The results demonstrate that the proposed methods achieve better performance than traditional inpainting algorithms such as biharmonic functions. Overall, tunable U-Net and mixed-scale dense network architectures achieved the best reconstruction performance among all the tested algorithms, with correlation coefficient scores greater than 0.9980
    corecore