14 research outputs found
The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts
The 42nd Symposium Chromatographic Methods of Investigating Organic Compounds : Book of abstracts. June 4-7, 2019, Szczyrk, Polan
Application of HPLC-DAD for In Vitro Investigation of Acetylcholinesterase Inhibition Activity of Selected Isoquinoline Alkaloids from Sanguinaria canadensis Extracts
Isoquinoline alkaloids may have a wide range of pharmacological activities. Some of them have acetylcholinesterase activity inhibition. Nowadays, neurodegenerative disorders such as Alzheimer’s disease have become a serious public health problem. Searching for new effective compounds with inhibited acetylcholinesterase activity is one of the most significant challenges of modern scientific research. The aim of this study was the in vitro investigation of acetylcholinesterase activity inhibition of extracts obtained from Sanguinaria canadensis collected before, during and after flowering. The acetylcholinesterase activity inhibition of these extracts has not been previously tested. The aim was also to quantify selected alkaloids in the investigated extracts by high performance liquid chromatography (HPLC). The analyses of alkaloid content were performed using HPLC in reversed phase (RP) mode using Polar RP column and mobile phase containing acetonitrile, water and ionic liquid (IL). The acetylcholinesterase activity inhibition of the tested plant extracts and respective alkaloid standards were examined using high performance liquid chromatography with diode-array detector (HPLC-DAD) for the quantification of 5-thio-2-nitro-benzoic acid, which is the product of the reaction between the thiocholine (product of the hydrolysis of acetylthiocholine reaction) with Ellman reagent. The application of the HPLC method allowed for elimination of absorption of interfering components, for example, alkaloids such as sanguinarine and berberine. It is revealed that the HPLC method can be successfully used for the evaluation of the acetylcholinesterase inhibitory activity in samples such as plant extracts, especially those containing colored components adsorbing at wavelength in the range 405–412 nm. The acetylcholinesterase inhibition activity synergy of pairs of alkaloid standards and mixture of all investigated alkaloids was also determined. Most investigated alkaloids and all Sanguinaria canadensis extracts exhibited very high acetylcholinesterase activity inhibition. IC50 values obtained for alkaloid standards were from 0.36 for berberine to 23.13 µg/mL for protopine and from 61.24 to 89.14 µg/mL for Sanguinaria canadensis extracts. Our investigations demonstrated that these plant extracts can be recommended for further in vivo experiments to confirm their acetylcholinesterase activity inhibition
Determination of Anti-Alzheimer’s Disease Activity of Selected Plant Ingredients
Neurodegenerative diseases, among which one of the more common is Alzheimer’s disease, are the one of the biggest global public health challenges facing our generation because of the increasing elderly population in most countries. With the growing burden of these diseases, it is essential to discover and develop new treatment options capable of preventing and treating them. Neurodegenerative diseases, among which one of the most common is Alzheimer’s disease, are a multifactorial disease and therefore demand multiple therapeutic approaches. One of the most important therapeutic strategies is controlling the level of acetylcholine—a neurotransmitter in cholinergic synapses—by blocking the degradation of acetylcholine using acetylcholinesterase inhibitors such as tacrine, galantamine, donepezil and rivastigmine. However, these drugs can cause some adverse side effects, such as hepatotoxicity and gastrointestinal disorder. Thus, the search for new, more effective drugs is very important. In the last few years, different active constituents from plants have been tested as potential drugs in neurodegenerative disease therapy. The availability, lower price and less toxic effects of herbal medicines compared with synthetic agents make them a simple and excellent choice in the treatment of neurodegenerative diseases. The empirical approach to discovering new drugs from the systematic screening of plant extracts or plant-derived compounds is still an important strategy when it comes to finding new biologically active substances. The aim of this review is to identify new, safe and effective compounds that are potential candidates for further in vivo and clinical tests from which more effective drugs for the treatment of Alzheimer’s disease could be selected. We reviewed the methods used to determine anti-Alzheimer’s disease activity. Here, we have discussed the relevance of plant-derived compounds with in vitro activity. Various plants and phytochemical compounds have shown different activity that could be beneficial in the treatment of Alzheimer’s disorders. Most often, medicinal plants and their active components have been investigated as acetylcholinesterase and/or butyrylcholinesterase activity inhibitors, modifiers of β-amyloid processing and antioxidant agents. This study also aims to highlight species with assessed efficacy, usable plant parts and the most active plant components in order to identify species and compounds of interest for further study. Future research directions are suggested and recommendations made to expand the use of medicinal plants, their formulations and plant-derived active compounds to prevent, mitigate and treat Alzheimer’s disease
Review of Chromatographic Methods Coupled with Modern Detection Techniques Applied in the Therapeutic Drugs Monitoring (TDM)
Therapeutic drug monitoring (TDM) is a tool used to integrate pharmacokinetic and pharmacodynamics knowledge to optimize and personalize various drug therapies. The optimization of drug dosing may improve treatment outcomes, reduce toxicity, and reduce the risk of developing drug resistance. To adequately implement TDM, accurate and precise analytical procedures are required. In clinical practice, blood is the most commonly used matrix for TDM; however, less invasive samples, such as dried blood spots or non-invasive saliva samples, are increasingly being used. The choice of sample preparation method, type of column packing, mobile phase composition, and detection method is important to ensure accurate drug measurement and to avoid interference from matrix effects and drug metabolites. Most of the reported procedures used liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) techniques due to its high selectivity and sensitivity. High-performance chromatography with ultraviolet detection (HPLC-UV) methods are also used when a simpler and more cost-effective methodology is desired for clinical monitoring. The application of high-performance chromatography with fluorescence detection (HPLC-FLD) with and without derivatization processes and high-performance chromatography with electrochemical detection (HPLC-ED) techniques for the analysis of various drugs in biological samples for TDM have been described less often. Before chromatographic analysis, samples were pretreated by various procedures—most often by protein precipitation, liquid–liquid extraction, and solid-phase extraction, rarely by microextraction by packed sorbent, dispersive liquid–liquid microextraction. The aim of this article is to review the recent literature (2010–2020) regarding the use of liquid chromatography with various detection techniques for TDM
Determination of Some Isoquinoline Alkaloids in Extracts Obtained from Selected Plants of the Ranunculaceae, Papaveraceae and Fumarioideae Families by Liquid Chromatography and In Vitro and In Vivo Investigations of Their Cytotoxic Activity
Alkaloids are heterocyclic bases with widespread occurrence in nature. Plants are rich and easily accessible sources of them. Most isoquinoline alkaloids have cytotoxic activity for different types of cancer, including malignant melanoma, the most aggressive type of skin cancer. The morbidity of melanoma has increased worldwide every year. For that reason, developing new candidates for anti–melanoma drugs is highly needed. The aim of this study was to investigate the alkaloid compositions of plant extracts obtained from Macleaya cordata root, stem and leaves, Pseudofumaria lutea root and herb, Lamprocapnos spectabilis root and herb, Fumaria officinalis whole plant, Thalictrum foetidum root and herb, and Meconopsis cambrica root and herb by HPLC-DAD and LC-MS/MS. For determination of cytotoxic properties, human malignant melanoma cell line A375, human Caucasian malignant melanoma cell line G-361, and human malignant melanoma cell line SK-MEL-3 were exposed in vitro to the tested plant extracts. Based on the in vitro experiments, Lamprocapnos spectabilis herb extract was selected for further, in vivo research. The toxicity of the extract obtained from Lamprocapnos spectabilis herb was tested using an animal zebrafish model in the fish embryo toxicity test (FET) for determination of the LC50 value and non-toxic doses. Determination of the influence of the investigated extract on the number of cancer cells in a living organism was performed using a zebrafish xenograft model. Determination of the contents of selected alkaloids in different plant extracts was performed using high performance liquid chromatography (HPLC) in a reverse-phase system (RP) on a Polar RP column with a mobile phase containing acetonitrile, water and ionic liquid. The presence of these alkaloids in plant extracts was confirmed by LC-MS/MS. Preliminary cytotoxic activity of all prepared plant extracts and selected alkaloid standards was examined using human skin cancer cell lines A375, G-361, and SK-MEL-3. The cytotoxicity of the investigated extract was determined in vitro by cell viability assays (MTT). For in vivo determination of investigated extract cytotoxicity, a Danio rerio larvae xenograft model was used. All investigated plant extracts in in vitro experiments exhibited high cytotoxic activity against the tested cancer cell lines. The results obtained using the Danio rerio larvae xenograft model confirmed the anticancer activity of the extract obtained from Lamprocapnos spectabilis herb. The conducted research provides a basis for future investigations of these plant extracts for potential use in the treatment of malignant melanoma
Development of the Validated Stability-Indicating Method for the Determination of Vortioxetine in Bulk and Pharmaceutical Formulation by HPLC-DAD, Stress Degradation Kinetics Studies and Detection of Degradation Products by LC-ESI-QTOF-MS
Vortioxetine (VOR) is a new antidepressant drug used to treat major depressive disorder. In this work, a novel, simple, rapid, accurate, precise, selective, stability-indicating, and fully validated high-performance liquid chromatography method with diode array detection (HPLC-DAD) was developed to determine VOR in bulk and pharmaceutical formulations. A Polar-RP column was used, with a mobile phase consisting of acetonitrile (ACN), methanol (MeOH), acetate buffer pH 3.5, and addition of diethylamine (DEA) in the isocratic elution mode. Assessing the stability of the VOR is fundamental to guarantee the efficacy, safety, and quality of drug products. In this study, the VOR active pharmaceutical ingredient (API) and tablets were subjected to a detailed study of forced degradation, using several degrading agents (acid, alkaline, water, heat, light, and oxidation agents). The developed HPLC-DAD method allows the collection of all the essential data to determine degradation kinetics. It was found that the decomposition of vortioxetine is fragile towards oxidative conditions and photolysis, yielding the first-order and second-order kinetic reaction in the above stress conditions, respectively. The degradation products (DPs) were identified by the high-resolution liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-QTOF-MS) method. The HPLC-DAD method was successfully applied for the quantification of VOR in tablets. Additionally, in silico toxicity prediction of the DPs was performed
Comparison of Anticancer Activity and HPLC-DAD Determination of Selected Isoquinoline Alkaloids from Thalictrum foetidum, Berberis sp. and Chelidonium majus Extracts
Background: Plants are an important origin of natural substances that the raw material for various pharmaceutical and therapeutic applications due to the presence of phytochemicals, such as alkaloids. Alkaloids, which are found in different plant species, possess numerous biological activities. Some alkaloids have strong cytotoxic effects on various cancer cells. The search for new drugs to treat various cancers is one of the most important challenges of modern scientific research. Objective: This study aimed to investigate of cytotoxic activity of extracts that were obtained from Chelidonium Majus; Berberis sp.; Thalictrum foetidum containing various alkaloids on selected cancer cell lines. The aim was also the quantification of selected alkaloids in the investigated extracts by HPLC. Methods: The analysis of alkaloids contents were performed while using HPLC in reversed phase (RP) mode using Polar RP column and mobile phase containing acetonitrile, water, and ionic liquid. The cytotoxic effect of the tested plant extracts and respective alkaloids’ standards were examined while using human pharyngeal squamous carcinoma cells (FaDu), human tongue squamous carcinoma cells (SCC-25), human breast adenocarcinoma cell line (MCF-7), and human triple-negative breast adenocarcinoma cell line (MDA-MB-231). Conclusion: All of the investigated plant extracts possess cytotoxic activity against cancer cell lines: FaDu, SCC-25, MCF-7, and MDA-MB-231. The highest cytotoxic activity against FaDu and MDA-MB-231 cells was observed for Chelidonium majus root extract, while the highest cytotoxic activity against SCC-25 and MCF-7 cells was estimated for the Thalictrum foetidum root extract. There obtained significant differences in the cytotoxic activity of extracts that were obtained from the roots and herbs of Chelidonium majus and Thalictrum foetidum. Based on these results, investigated plant extracts can be recommended for further investigations of anticancer activity
Comparison of Various Chromatographic Systems for Analysis of Cytisine in Human Serum, Saliva and Pharmaceutical Formulation by HPLC with Diode Array, Fluorescence or Mass Spectrometry Detection
Background: Identification and quantitative determination of cytisine, especially in biological samples and pharmaceutical formulations, is still a difficult analytical task. Cytisine is an alkaloid with a small and very polar molecule. For this reason, it is very weakly retained on reversed phase (RP) stationary phases, such as commonly used alkyl-bonded phases. The very weak retention of cytisine causes it to be eluted together with the components of biological matrices. Objective: Comparison and evaluation of various chromatographic systems for analysis of cytisine in different matrices—serum, saliva and pharmaceutical formulation—by high performance liquid chromatography (HPLC) with diode array (DAD), fluorescence (FLD) and mass spectrometry (MS) detection. Methods: The analyses were performed using HPLC in reversed phase (RP), hydrophilic interaction liquid chromatography (HILIC) and ion exchange chromatography (IEC) modes. Different sample pre-treatment methods were tested: Protein precipitation (with acetone, methanol (MeOH) or acetonitrile (ACN), and solid phase extraction (SPE) using cartridges with octadecyl (C18), hydrophilic-lipophilic balanced copolymer (HLB) or strong cation exchange sorbents (Strata X-C). Conclusion: Significant differences were observed in retention parameters with a change of the used chromatographic system. The various properties of stationary phases resulted in differences in analyte retention, peaks’ shape and systems’ efficiency. The weakest retention was observed using RP systems; however, the use of the Polar RP phase can be an alternative for application in green chromatography. In the strongest retention was observed using a strong cation exchange (SCX) phase. The most optimal systems were chosen for the analysis of cytisine in the pharmaceutical preparation, serum and saliva after sample pre-treatment with the new SPE procedure. Due to the sensitivity, the use of HPLC-DAD or HPLC-FLD is the most optimal for drug analysis in pharmaceutical preparations, whereas HPLC-MS is suitable for analysis of cytisine in biological samples
Determination of Cytotoxic Activity of Selected Isoquinoline Alkaloids and Plant Extracts Obtained from Various Parts of Mahonia aquifolium Collected in Various Vegetation Seasons
Melanoma is a serious form of skin cancer that begins in cells known as melanocytes. While it is less common than the other forms of skin cancer, melanoma is more dangerous because of its ability to spread to other organs more rapidly if it is not treated at an early stage. The number of people diagnosed with melanoma has increased over the last few decades. The most widely used treatments include surgery, chemotherapy, and radiation therapy. The search for new drugs to treat various cancers is one of the most important challenges of modern scientific research. Some isoquinoline alkaloids found in different plant species have strong cytotoxic effects on various cancer cells. We tested the effect of isoquinoline alkaloids and extracts obtained from various parts of Mahonia aquifolium collected in various vegetation seasons on human melanoma cancer cells and our data indicated that investigated extract induced significant reduction in cell viability of Human malignant melanoma cells (A375), human Caucasian malignant melanoma cell line (G361), and human malignant melanoma cell line (SKMEL3 cancer cell lines in a dose- and time-dependent manner. Differences in cytotoxic activity were observed for extracts obtained from various parts of Mahonia aquifolium. Significant differences were also obtained in the alkaloids content and cytotoxic activity of the extracts depending on the season of collection of plant material. Our investigations exhibit that these plant extracts can be recommended for further in vivo experiments in order to confirm the possibility of their use in the treatment of human melanomas
Determination of Cytotoxic Activity of Sanguinaria canadensis Extracts against Human Melanoma Cells and Comparison of Their Cytotoxicity with Cytotoxicity of Some Anticancer Drugs
Melanoma is an enormous global health burden, and should be effectively addressed with better therapeutic strategies. Therefore, new therapeutic agents are needed for the management of this disease. The aim of this study was the investigation of cytotoxic activity of some isoquinoline alkaloid standards and extracts obtained from Sanguinaria canadensis—collected before, during, and after flowering—against three different human melanoma cells (A375, G361, SK-MEL-3). The cytotoxicity of these extracts was not previously tested on these melanoma cell lines. Determination of alkaloid contents was performed by HPLC-DAD using Polar RP column and mobile phase containing acetonitrile, water, and 1-butyl-3-methylimidazolium tetrafluoroborate. The cytotoxicity of alkaloid standards was investigated by determination of cell viability and calculation of IC50 values. Significant differences were observed in the alkaloids content and cytotoxic activity of the extracts, depending on the season of collection of the plant material. In the Sanguinaria canadensis extracts high contents of sanguinarine (from 4.8543 to 9.5899 mg/g of dry plant material) and chelerythrine (from 42.7224 to 6.8722 mg/g of dry plant material) were found. For both of these alkaloids, very high cytotoxic activity against the tested cell lines were observed. The IC50 values were in the range of 0.11–0.54 µg/mL for sanguinarine and 0.14 to 0.46 µg/mL for chelerythrine. IC50 values obtained for Sanguinaria canadensis extracts against all tested cell lines were also very low (from 0.88 to 10.96 µg/mL). Cytotoxic activity of alkaloid standards and Sanguinaria canadensis extracts were compared with the cytotoxicity of anticancer drugs—etoposide, cisplatin, and hydroxyurea. In all cases except the one obtained for cisplatin against A375, which was similar to that obtained for Sanguinaria canadensis after flowering against the same cell line, IC50 values obtained for anticancer drugs were higher than the IC50 values obtained for sanguinarine, chelerythrine, and Sanguinaria canadensis extracts. Our results showed that Sanguinaria canadensis extracts and isoquinoline alkaloids, especially sanguinarine and chelerythrine, could be recommended for further in vivo experiments in order to confirm the possibility of their application in the treatment of human melanomas