2,260 research outputs found

    Raising Tc in charge density wave superconductor ZrTe3 by Ni intercalation

    Full text link
    We report discovery of bulk superconductivity in Ni0.05ZrTe3 at Tc = 3.1 K, obtained through Ni intercalation. Superconductivity coexists with charge density wave (CDW) state with TCDW = 41 K. When compared to parent material ZrTe3, filamentary superconducting transition is substantially increased whereas TCDW was suppressed. The analysis of superconducting state indicates that Ni0.05ZrTe3 is an intermediately coupled superconductor.Comment: 5 pages, 5 figure

    Scaling Behavior of Angular Dependent Resistivity in CeCoIn5_5: Possible Evidence for d-Wave Density Waves

    Full text link
    In-plane angular dependent resistivity ADR was measured in the non-Fermi liquid regime of CeCoIn5_5 single crystals at temperatures T≤20T \le 20 K and in magnetic fields HH up to 14 T. Two scaling behaviors were identified in low field region where resistivity shows T-linear dependence, separated by a critical angle θc\theta_{c} which is determined by the anisotropy of CeCoIn5_5; i.e., ADR depends only on the perpendicular (parallel) field component below (above) θc\theta_c. These scaling behaviors and other salient features of ADR are consistent with d-wave density waves

    The Missing Link: Magnetism and Superconductivity

    Full text link
    The effect of magnetic moments on superconductivity has long been a controversial subject in condensed matter physics. While Matthias and collaborators experimentally demonstrated the destruction of superconductivity in La by the addition of magnetic moments (Gd), it has since been suggested that magnetic fluctuations are in fact responsible for the development of superconducting order in other systems. Currently this debate is focused on several families of unconventional superconductors including high-Tc cuprates, borocarbides as well as heavy fermion systems where magnetism and superconductivity are known to coexist. Here we report a novel aspect of competition and coexistence of these two competing orders in an interesting class of heavy fermion compounds, namely the 1-1-5 series: CeTIn5 where T=Co, Ir, or Rh. Our optical experiments indicate the existence of regions in momentum space where local moments remain unscreened. The extent of these regions in momentum space appears to control both the normal and superconducting state properties in the 1-1-5 family of heavy fermion (HF) superconductors.Comment: 6 pages, 2 figure

    Synthesis of Nanoporous Type A and X Zeolite Mixtures from Biomass Combustion Fly Ash for Post-Combustion Carbon Capture

    Get PDF
    In this study, improved nanoporous zeolites for use in post-combustion carbon capture have been synthesised from industrial-grade biomass combustion fly ash generated in one of the largest biomass combustion power plants in the UK. The method of nanoporous zeolite synthesis follows an alkaline fusion-assisted hydrothermal procedure. The nanoporous zeolites have been characterised by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The presence of two crystalline structures, Faujasite and Linde Type A has been confirmed by the characterisation results. The CO 2 adsorption investigations were conducted via thermogravimetric analysis (TGA) to estimate the uptake capacity of the prepared adsorbents. TGA studies suggest that the improved nanoporous adsorbent, evaluated under 100 mol % CO 2 at atmospheric pressure, has an equilibrium capacity of over 1.6 mmolCO 2 /g at 50°C, a two-fold increase from our previous study with a crystalline structure confirmed by XRD.10.13039/501100000266-Engineering and Physical Sciences Research Council (EPSRC), UK; 10.13039/100008475-Brunel University London, UK

    Coexistence of magnetism and superconductivity in CeRh1-xIrxIn5

    Full text link
    We report a thermodynamic and transport study of the phase diagram of CeRh1-xIrxIn5. Superconductivity is observed over a broad range of doping, 0.3 < x < 1, including a substantial range of concentration (0.3 < x <0.6) over which it coexists with magnetic order (which is observed for 0 < x < 0.6). The anomalous transition to zero resistance that is observed in CeIrIn5 is robust against Rh substitution. In fact, the observed bulk Tc in CeRh0.5Ir0.5In5 is more than double that of CeIrIn5, whereas the zero-resistance transition temperature is relatively unchanged for 0.5 < x < 1
    • …
    corecore