2,857 research outputs found

    Anomalous thermopower and Nernst effect in CeCoIn5\rm CeCoIn_5: entropy-current loss in precursor state

    Full text link
    The heavy-electron superconductor CeCoIn5_5 exhibits a puzzling precursor state above its superconducting critical temperature at TcT_c = 2.3 K. The thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of the electrons undergoes a steep decrease reaching ∼\sim0 at TcT_c. Concurrently, the off-diagonal thermoelectric current αxy\alpha_{xy} is enhanced. The delicate sensitivity of the zero-entropy state to field implies phase coherence over large distances. The prominent anomalies in the thermoelectric current contrast with the relatively weak effects in the resistivity and magnetization.Comment: 5 figures, 4 page

    From Dumb Wireless Sensors to Smart Networks using Network Coding

    Full text link
    The vision of wireless sensor networks is one of a smart collection of tiny, dumb devices. These motes may be individually cheap, unintelligent, imprecise, and unreliable. Yet they are able to derive strength from numbers, rendering the whole to be strong, reliable and robust. Our approach is to adopt a distributed and randomized mindset and rely on in network processing and network coding. Our general abstraction is that nodes should act only locally and independently, and the desired global behavior should arise as a collective property of the network. We summarize our work and present how these ideas can be applied for communication and storage in sensor networks.Comment: To be presented at the Inaugural Workshop of the Center for Information Theory and Its Applications, University of California - San Diego, La Jolla, CA, February 6 - 10, 200

    The Lorenz number in CeCoIn5_5 inferred from the thermal and charge Hall currents

    Full text link
    The thermal Hall conductivity κxy\kappa_{xy} and Hall conductivity σxy\sigma_{xy} in CeCoIn5_5 are used to determine the Lorenz number LH{\cal L}_H at low temperature TT. This enables the separation of the observed thermal conductivity into its electronic and non-electronic parts. We uncover evidence for a charge-neutral, field-dependent thermal conductivity, which we identify with spin excitations. At low TT, these excitations dominate the scattering of charge carriers. We show that suppression of the spin excitations in high fields leads to a steep enhancement of the electron mean-free-path, which leads to an interesting scaling relation between the magnetoresistance, thermal conductivity and σxy\sigma_{xy}.Comment: 6 pages, 7 figures Intro para slightly lengthened. Added 2 new re

    Spin Fluctuation Induced Superconductivity Controlled by Orbital Fluctuation

    Full text link
    A microscopic Hamiltonian reflecting the correct symmetry of ff-orbitals is proposed to discuss superconductivity in heavy fermion systems. In the orbitally degenerate region in which not only spin fluctuations but also orbital fluctuations develop considerably, cancellation between spin and orbital fluctuations destabilizes dx2−y2d_{x^{2}-y^{2}}-wave superconductivity. Entering the non-degenerate region by increasing the crystalline electric field, dx2−y2d_{x^{2}-y^{2}}-wave superconductivity mediated by antiferromagnetic spin fluctuations emerges out of the suppression of orbital fluctuations. We argue that the present scenario can be applied to recently discovered superconductors CeTIn5_{5} (T=Ir, Rh, and Co).Comment: 4 pages, 3 figure

    Roles of Critical Valence Fluctuations in Ce- and Yb-Based Heavy Fermion Metals

    Full text link
    The roles of critical valence fluctuations of Ce and Yb are discussed as a key origin of several anomalies observed in Ce- and Yb-based heavy fermion systems. Recent development of the theory has revealed that a magnetic field is an efficient control parameter to induce the critical end point of the first-order valence transition. Metamagnetism and non-Fermi liquid behavior caused by this mechanism are discussed by comparing favorably with CeIrIn5, YbAgCu4, and YbIr2Zn20. The interplay of the magnetic order and valence fluctuations offers a key concept for understanding Ce- and Yb-based systems. It is shown that suppression of the magnetic order by enhanced valence fluctuations gives rise to the coincidence of the magnetic-transition point and valence-crossover point at absolute zero as a function of pressure or magnetic field. The interplay is shown to resolve the outstanding puzzle in CeRhIn5 in a unified way. The broader applicability of this newly clarified mechanism is discussed by surveying promising materials such as YbAuCu4, beta-YbAlB4, and YbRh2Si2.Comment: 17 pages, 8 figures, invited paper in special issue on strongly correlated electron system

    Magnetic-field dependence of antiferromagnetic structure in CeRh1-xCoxIn5

    Full text link
    We investigated effects of magnetic field H on antiferromagnetic (AF) structures in CeRh_{1-x}Co_xIn_5 by performing the elastic neutron scattering measurements. By applying H along the [1,-1,0] direction, the incommensurate AF state with the propagation vector of q_{h1}=(1/2,1/2,0.297) observed at H=0 is replaced by the commensurate AF state with the q_{c2} = (1/2, 1/2, 1/4) modulation above 2 T for x=0.23, while the AF states with the q_{c1}=(1/2,1/2,1/2) and q_{h2}=(1/2,1/2,0.42) modulations seen at H=0 change into a single q_{c1}-AF state above ~1.6 T for x=0.7. These results suggest the different types of AF correlation for Co concentrations of 0.23 and 0.7 in an applied magnetic field H.Comment: 4 pages, 2 figures, to appear in the proceedings of ICM2009 (Karlsruhe, Germany

    Direct Evidence for a Magnetic f-electron Mediated Cooper Pairing Mechanism of Heavy Fermion Superconductivity in CeCoIn5

    Get PDF
    To identify the microscopic mechanism of heavy-fermion Cooper pairing is an unresolved challenge in quantum matter studies; it may also relate closely to finding the pairing mechanism of high temperature superconductivity. Magnetically mediated Cooper pairing has long been the conjectured basis of heavy-fermion superconductivity but no direct verification of this hypothesis was achievable. Here, we use a novel approach based on precision measurements of the heavy-fermion band structure using quasiparticle interference (QPI) imaging, to reveal quantitatively the momentum-space (k-space) structure of the f-electron magnetic interactions of CeCoIn5. Then, by solving the superconducting gap equations on the two heavy-fermion bands Ekα,βE_k^{\alpha,\beta} with these magnetic interactions as mediators of the Cooper pairing, we derive a series of quantitative predictions about the superconductive state. The agreement found between these diverse predictions and the measured characteristics of superconducting CeCoIn5, then provides direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the f-electron magnetism.Comment: 19 pages, 4 figures, Supplementary Information: 31 pages, 5 figure
    • …
    corecore