2,857 research outputs found
Anomalous thermopower and Nernst effect in : entropy-current loss in precursor state
The heavy-electron superconductor CeCoIn exhibits a puzzling precursor
state above its superconducting critical temperature at = 2.3 K. The
thermopower and Nernst signal are anomalous. Below 15 K, the entropy current of
the electrons undergoes a steep decrease reaching 0 at .
Concurrently, the off-diagonal thermoelectric current is
enhanced. The delicate sensitivity of the zero-entropy state to field implies
phase coherence over large distances. The prominent anomalies in the
thermoelectric current contrast with the relatively weak effects in the
resistivity and magnetization.Comment: 5 figures, 4 page
From Dumb Wireless Sensors to Smart Networks using Network Coding
The vision of wireless sensor networks is one of a smart collection of tiny,
dumb devices. These motes may be individually cheap, unintelligent, imprecise,
and unreliable. Yet they are able to derive strength from numbers, rendering
the whole to be strong, reliable and robust. Our approach is to adopt a
distributed and randomized mindset and rely on in network processing and
network coding. Our general abstraction is that nodes should act only locally
and independently, and the desired global behavior should arise as a collective
property of the network. We summarize our work and present how these ideas can
be applied for communication and storage in sensor networks.Comment: To be presented at the Inaugural Workshop of the Center for
Information Theory and Its Applications, University of California - San
Diego, La Jolla, CA, February 6 - 10, 200
The Lorenz number in CeCoIn inferred from the thermal and charge Hall currents
The thermal Hall conductivity and Hall conductivity
in CeCoIn are used to determine the Lorenz number at low temperature . This enables the separation of the observed
thermal conductivity into its electronic and non-electronic parts. We uncover
evidence for a charge-neutral, field-dependent thermal conductivity, which we
identify with spin excitations. At low , these excitations dominate the
scattering of charge carriers. We show that suppression of the spin excitations
in high fields leads to a steep enhancement of the electron mean-free-path,
which leads to an interesting scaling relation between the magnetoresistance,
thermal conductivity and .Comment: 6 pages, 7 figures Intro para slightly lengthened. Added 2 new re
Spin Fluctuation Induced Superconductivity Controlled by Orbital Fluctuation
A microscopic Hamiltonian reflecting the correct symmetry of -orbitals is
proposed to discuss superconductivity in heavy fermion systems. In the
orbitally degenerate region in which not only spin fluctuations but also
orbital fluctuations develop considerably, cancellation between spin and
orbital fluctuations destabilizes -wave superconductivity.
Entering the non-degenerate region by increasing the crystalline electric
field, -wave superconductivity mediated by antiferromagnetic
spin fluctuations emerges out of the suppression of orbital fluctuations. We
argue that the present scenario can be applied to recently discovered
superconductors CeTIn (T=Ir, Rh, and Co).Comment: 4 pages, 3 figure
Roles of Critical Valence Fluctuations in Ce- and Yb-Based Heavy Fermion Metals
The roles of critical valence fluctuations of Ce and Yb are discussed as a
key origin of several anomalies observed in Ce- and Yb-based heavy fermion
systems. Recent development of the theory has revealed that a magnetic field is
an efficient control parameter to induce the critical end point of the
first-order valence transition. Metamagnetism and non-Fermi liquid behavior
caused by this mechanism are discussed by comparing favorably with CeIrIn5,
YbAgCu4, and YbIr2Zn20. The interplay of the magnetic order and valence
fluctuations offers a key concept for understanding Ce- and Yb-based systems.
It is shown that suppression of the magnetic order by enhanced valence
fluctuations gives rise to the coincidence of the magnetic-transition point and
valence-crossover point at absolute zero as a function of pressure or magnetic
field. The interplay is shown to resolve the outstanding puzzle in CeRhIn5 in a
unified way. The broader applicability of this newly clarified mechanism is
discussed by surveying promising materials such as YbAuCu4, beta-YbAlB4, and
YbRh2Si2.Comment: 17 pages, 8 figures, invited paper in special issue on strongly
correlated electron system
Magnetic-field dependence of antiferromagnetic structure in CeRh1-xCoxIn5
We investigated effects of magnetic field H on antiferromagnetic (AF)
structures in CeRh_{1-x}Co_xIn_5 by performing the elastic neutron scattering
measurements. By applying H along the [1,-1,0] direction, the incommensurate AF
state with the propagation vector of q_{h1}=(1/2,1/2,0.297) observed at H=0 is
replaced by the commensurate AF state with the q_{c2} = (1/2, 1/2, 1/4)
modulation above 2 T for x=0.23, while the AF states with the
q_{c1}=(1/2,1/2,1/2) and q_{h2}=(1/2,1/2,0.42) modulations seen at H=0 change
into a single q_{c1}-AF state above ~1.6 T for x=0.7. These results suggest the
different types of AF correlation for Co concentrations of 0.23 and 0.7 in an
applied magnetic field H.Comment: 4 pages, 2 figures, to appear in the proceedings of ICM2009
(Karlsruhe, Germany
Direct Evidence for a Magnetic f-electron Mediated Cooper Pairing Mechanism of Heavy Fermion Superconductivity in CeCoIn5
To identify the microscopic mechanism of heavy-fermion Cooper pairing is an
unresolved challenge in quantum matter studies; it may also relate closely to
finding the pairing mechanism of high temperature superconductivity.
Magnetically mediated Cooper pairing has long been the conjectured basis of
heavy-fermion superconductivity but no direct verification of this hypothesis
was achievable. Here, we use a novel approach based on precision measurements
of the heavy-fermion band structure using quasiparticle interference (QPI)
imaging, to reveal quantitatively the momentum-space (k-space) structure of the
f-electron magnetic interactions of CeCoIn5. Then, by solving the
superconducting gap equations on the two heavy-fermion bands
with these magnetic interactions as mediators of the
Cooper pairing, we derive a series of quantitative predictions about the
superconductive state. The agreement found between these diverse predictions
and the measured characteristics of superconducting CeCoIn5, then provides
direct evidence that the heavy-fermion Cooper pairing is indeed mediated by the
f-electron magnetism.Comment: 19 pages, 4 figures, Supplementary Information: 31 pages, 5 figure
- …