10 research outputs found

    Asymmetric changes in foot anthropometry with pregnancy may be related to onset of lower limb and low back pain.

    No full text
    IntroductionFifty percent of pregnant females experience pain with 20% reporting long-term pain post-partum. Pregnant females undergo changes in foot anthropometry, lower extremity alignment, and joint laxity. It is unknown if asymmetric alterations may be related to development of pain. The purpose of this study was twofold: 1) to compare asymmetric alignment in pregnant females with and without pain during pregnancy and in nulliparous controls and 2) to assess the relationship between asymmetric alignment and pain severity in all participants.MethodsTen pregnant females in their third trimester and nine nulliparous controls participated. Bilateral asymmetry of foot length, width, arch index, arch height index, arch rigidity index, arch drop, rearfoot angle, and pelvic obliquity were determined. Joint laxity and musculoskeletal pain were also assessed. ANOVAs were utilized to compare asymmetries between pregnant females reporting pain (n = 5), those not reporting pain (n = 5), and controls. Spearman's Rho correlations were used to relate asymmetry to pain magnitude (α = 0.05).ResultsNo statistical differences (p>0.05) were found between pregnant females with or without pain and controls for any of the metrics. Negative correlations were found between arch index asymmetry and low back pain (p = 0.005), foot length asymmetry and lower leg pain (p = 0.008), and pelvic obliquity and lower leg pain (p = 0.020). Positive correlations were found between foot width asymmetry and knee pain (p = 0.028), as well as arch drop asymmetry and upper leg (p = 0.024), knee (p = 0.005), and lower leg pain (p = 0.019).ConclusionsThis study was successful in identifying potential targets for prevention and treatment of pain in pregnancy. Furthermore, because pain during pregnancy may be predictive of pain post-partum, it is important to conduct future research to determine both if interventions such as footwear or exercise can prevent or treat these asymmetries and prevent post-partum pain

    Spearman-Rho correlation coefficients for knee, lower leg, and foot/ankle and pain.

    No full text
    Spearman-Rho correlation coefficients for knee, lower leg, and foot/ankle and pain.</p

    Spearman-Rho correlation coefficients for low back, hip/buttocks, and upper leg asymmetries +and pain.

    No full text
    Spearman-Rho correlation coefficients for low back, hip/buttocks, and upper leg asymmetries +and pain.</p

    Box plots for variables with large effect sizes (FW, AI, and ARI asymmetries).

    No full text
    Striped boxed represent absolute differences in each metric for pregnant females reporting no pain, check boxes represent pregnant females with pain, and the dark boxes represent nulliparous controls. Whiskers represent 95% CI for each group.</p

    Lower extremity asymmetries for each group with effect sizes and p-values.

    No full text
    Lower extremity asymmetries for each group with effect sizes and p-values.</p

    S1 Data -

    No full text
    IntroductionFifty percent of pregnant females experience pain with 20% reporting long-term pain post-partum. Pregnant females undergo changes in foot anthropometry, lower extremity alignment, and joint laxity. It is unknown if asymmetric alterations may be related to development of pain. The purpose of this study was twofold: 1) to compare asymmetric alignment in pregnant females with and without pain during pregnancy and in nulliparous controls and 2) to assess the relationship between asymmetric alignment and pain severity in all participants.MethodsTen pregnant females in their third trimester and nine nulliparous controls participated. Bilateral asymmetry of foot length, width, arch index, arch height index, arch rigidity index, arch drop, rearfoot angle, and pelvic obliquity were determined. Joint laxity and musculoskeletal pain were also assessed. ANOVAs were utilized to compare asymmetries between pregnant females reporting pain (n = 5), those not reporting pain (n = 5), and controls. Spearman’s Rho correlations were used to relate asymmetry to pain magnitude (α = 0.05).ResultsNo statistical differences (p>0.05) were found between pregnant females with or without pain and controls for any of the metrics. Negative correlations were found between arch index asymmetry and low back pain (p = 0.005), foot length asymmetry and lower leg pain (p = 0.008), and pelvic obliquity and lower leg pain (p = 0.020). Positive correlations were found between foot width asymmetry and knee pain (p = 0.028), as well as arch drop asymmetry and upper leg (p = 0.024), knee (p = 0.005), and lower leg pain (p = 0.019).ConclusionsThis study was successful in identifying potential targets for prevention and treatment of pain in pregnancy. Furthermore, because pain during pregnancy may be predictive of pain post-partum, it is important to conduct future research to determine both if interventions such as footwear or exercise can prevent or treat these asymmetries and prevent post-partum pain.</div

    Demographics for pregnant pain and pregnant no pain groups.

    No full text
    Demographics for pregnant pain and pregnant no pain groups.</p

    Demographics for pregnant and control groups.

    No full text
    IntroductionFifty percent of pregnant females experience pain with 20% reporting long-term pain post-partum. Pregnant females undergo changes in foot anthropometry, lower extremity alignment, and joint laxity. It is unknown if asymmetric alterations may be related to development of pain. The purpose of this study was twofold: 1) to compare asymmetric alignment in pregnant females with and without pain during pregnancy and in nulliparous controls and 2) to assess the relationship between asymmetric alignment and pain severity in all participants.MethodsTen pregnant females in their third trimester and nine nulliparous controls participated. Bilateral asymmetry of foot length, width, arch index, arch height index, arch rigidity index, arch drop, rearfoot angle, and pelvic obliquity were determined. Joint laxity and musculoskeletal pain were also assessed. ANOVAs were utilized to compare asymmetries between pregnant females reporting pain (n = 5), those not reporting pain (n = 5), and controls. Spearman’s Rho correlations were used to relate asymmetry to pain magnitude (α = 0.05).ResultsNo statistical differences (p>0.05) were found between pregnant females with or without pain and controls for any of the metrics. Negative correlations were found between arch index asymmetry and low back pain (p = 0.005), foot length asymmetry and lower leg pain (p = 0.008), and pelvic obliquity and lower leg pain (p = 0.020). Positive correlations were found between foot width asymmetry and knee pain (p = 0.028), as well as arch drop asymmetry and upper leg (p = 0.024), knee (p = 0.005), and lower leg pain (p = 0.019).ConclusionsThis study was successful in identifying potential targets for prevention and treatment of pain in pregnancy. Furthermore, because pain during pregnancy may be predictive of pain post-partum, it is important to conduct future research to determine both if interventions such as footwear or exercise can prevent or treat these asymmetries and prevent post-partum pain.</div

    Data collection and analysis flowchart.

    No full text
    All participants began by completing the VAS pain surveys. Pregnant women were grouped into ‘pain’ or ‘no pain’ groups based on these scores with a pain threshold of 3. Biomechanical Asymmetries were quantified for 9 variables and used in statistical analysis.</p
    corecore