2,859 research outputs found

    Radiative cascades in charged quantum dots

    Full text link
    We measured, for the first time, two photon radiative cascades due to sequential recombination of quantum dot confined electron hole pairs in the presence of an additional spectator charge carrier. We identified direct, all optical cascades involving spin blockaded intermediate states, and indirect cascades, in which non radiative relaxation precedes the second recombination. Our measurements provide also spin dephasing rates of confined carriers.Comment: 4 pages, 3 figure

    Dynamics of the triple contact line on a non-isothermal heater at partial wetting

    Full text link
    The dynamics of the triple gas-liquid-solid contact line is analysed for the case where the gas is the saturated vapour corresponding to the liquid, like in the vapour bubble in boiling. It is shown that even small superheating (with respect to the saturation temperature) causes evaporation of the adsorption liquid film and the true triple contact is established. It is shown that the hydrodynamic contact line singularity cannot be relaxed with the Navier slip condition under such circumstances. Augmented with the second derivative slip condition is proposed to be applied. For the partial wetting conditions, a non-stationary contact line problem where the contact line motion is caused by evaporation or condensation is treated in the lubrication approximation in the vicinity of the contact line. High heat fluxes in this region require the transient heat conduction inside the heater to be accounted for. Two 2D problems, those of drop retraction with no phase change and of drop evaporation are solved and analysed as illustrations of the proposed approach

    Resolving the decades-long transient FIRST J141918.9+394036: an orphan long gamma-ray burst or a young magnetar nebula?

    Get PDF
    Ofek (2017) identified FIRST J141918.9+394036 (hereafter FIRST J1419+3940) as a radio source sharing similar properties and host galaxy type to the compact, persistent radio source associated with the first known repeating fast radio burst, FRB 121102. Law et al. (2018) showed that FIRST J1419+3940 is a transient source decaying in brightness over the last few decades. One possible interpretation is that FIRST J1419+3940 is a nearby analogue to FRB 121102 and that the radio emission represents a young magnetar nebula (as several scenarios assume for FRB 121102). Another interpretation is that FIRST J1419+3940 is the afterglow of an `orphan' long gamma-ray burst (GRB). The environment is similar to where most such events are produced. To distinguish between these hypotheses, we conducted radio observations using the European VLBI Network at 1.6 GHz to spatially resolve the emission and to search for millisecond-duration radio bursts. We detect FIRST J1419+3940 as a compact radio source with a flux density of 620±20 μJy620 \pm 20\ \mathrm{\mu Jy} (on 2018 September 18) and a source size of 3.9±0.7 mas3.9 \pm 0.7\ \mathrm{mas} (i.e. 1.6±0.3 pc1.6 \pm 0.3\ \mathrm{pc} given the angular diameter distance of 83 Mpc83\ \mathrm{Mpc}). These results confirm that the radio emission is non-thermal and imply an average expansion velocity of (0.10±0.02)c(0.10 \pm 0.02)c. Contemporaneous high-time-resolution observations using the 100-m Effelsberg telescope detected no millisecond-duration bursts of astrophysical origin. The source properties and lack of short-duration bursts are consistent with a GRB jet expansion, whereas they disfavor a magnetar birth nebula.Comment: 8 pages, 4 figures, accepted for publication in ApJ

    Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers

    Full text link
    We report direct experimental evidence of room temperature spin filtering in magnetic tunnel junctions (MTJs) containing CoFe2O4 tunnel barriers via tunneling magnetoresistance (TMR) measurements. Pt(111)/CoFe2O4(111)/gamma-Al2O3(111)/Co(0001) fully epitaxial MTJs were grown in order to obtain a high quality system, capable of functioning at room temperature. Spin polarized transport measurements reveal significant TMR values of -18% at 2 K and -3% at 290 K. In addition, the TMR ratio follows a unique bias voltage dependence that has been theoretically predicted to be the signature of spin filtering in MTJs containing magnetic barriers. CoFe2O4 tunnel barriers therefore provide a model system to investigate spin filtering in a wide range of temperatures.Comment: 6 pages, 3 figure

    Negative Komar Mass of Single Objects in Regular, Asymptotically Flat Spacetimes

    Full text link
    We study two types of axially symmetric, stationary and asymptotically flat spacetimes using highly accurate numerical methods. The one type contains a black hole surrounded by a perfect fluid ring and the other a rigidly rotating disc of dust surrounded by such a ring. Both types of spacetime are regular everywhere (outside of the horizon in the case of the black hole) and fulfil the requirements of the positive energy theorem. However, it is shown that both the black hole and the disc can have negative Komar mass. Furthermore, there exists a continuous transition from discs to black holes even when their Komar masses are negative.Comment: 7 pages, 2 figures, document class iopart. v2: changes made (including title) to coincide with published versio

    Coulomb interactions in single, charged self-assembled quantum dots: radiative lifetime and recombination energy

    Full text link
    We present results on the charge dependence of the radiative recombination lifetime, Tau, and the emission energy of excitons confined to single self-assembled InGaAs quantum dots. There are significant dot-to-dot fluctuations in the lifetimes for a particular emission energy. To reach general conclusions, we present the statistical behavior by analyzing data recorded on a large number of individual quantum dots. Exciton charge is controlled with extremely high fidelity through an n-type field effect structure, providing access to the neutral exciton (X0), the biexciton (2X0) and the positively (X1+) and negatively (X1-) charged excitons. We find significant differences in the recombination lifetime of each exciton such that, on average, Tau(X1-) / Tau(X0) = 1.25, Tau(X1+) / Tau(X0) = 1.58 and Tau(2X0) / Tau(X0) = 0.65. We attribute the change in lifetime to significant changes in the single particle hole wave function on charging the dot, an effect more pronounced on charging X0 with a single hole than with a single electron. We verify this interpretation by recasting the experimental data on exciton energies in terms of Coulomb energies. We show directly that the electron-hole Coulomb energy is charge dependent, reducing in value by 5-10% in the presence of an additional electron, and that the electron-electron and hole-hole Coulomb energies are almost equal.Comment: 8 pages, 7 figures, submitted to Phys. Rev.

    Laser cooling of a nanomechanical resonator mode to its quantum ground state

    Full text link
    We show that it is possible to cool a nanomechanical resonator mode to its ground state. The proposed technique is based on resonant laser excitation of a phonon sideband of an embedded quantum dot. The strength of the sideband coupling is determined directly by the difference between the electron-phonon couplings of the initial and final states of the quantum dot optical transition. Possible applications of the technique we describe include generation of non-classical states of mechanical motion.Comment: 5 pages, 3 figures, revtex

    Radiative cascade from quantum dot metastable spin-blockaded biexciton

    Get PDF
    We detect a novel radiative cascade from a neutral semiconductor quantum dot. The cascade initiates from a metastable biexciton state in which the holes form a spin-triplet configuration, Pauli-blockaded from relaxation to the spin-singlet ground state. The triplet biexciton has two photon-phonon-photon decay paths. Unlike in the singlet-ground state biexciton radiative cascade, in which the two photons are co-linearly polarized, in the triplet biexciton cascade they are crosslinearly polarized. We measured the two-photon polarization density matrix and show that the phonon emitted when the intermediate exciton relaxes from excited to ground state, preserves the exciton's spin. The phonon, thus, does not carry with it any which-path information other than its energy. Nevertheless, entanglement distillation by spectral filtering was found to be rather ineffective for this cascade. This deficiency results from the opposite sign of the anisotropic electron-hole exchange interaction in the excited exciton relative to that in the ground exciton.Comment: 6 pages, 4 figure
    • …
    corecore