44 research outputs found

    Neuronal Glutamate Transporters Control Dopaminergic Signaling and Compulsive Behaviors

    Get PDF
    There is an ongoing debate on the contribution of the neuronal glutamate transporter EAAC1 to the onset of compulsive behaviors. Here, we used behavioral, electrophysiological, molecular, and viral approaches in male and female mice to identify the molecular and cellular mechanisms by which EAAC1 controls the execution of repeated motor behaviors. Our findings show that, in the striatum, a brain region implicated with movement execution, EAAC1 limits group I metabotropic glutamate receptor (mGluRI) activation, facilitates D1 dopamine receptor (D1R) expression, and ensures long-term synaptic plasticity. Blocking mGluRI in slices from mice lacking EAAC1 restores D1R expression and synaptic plasticity. Conversely, activation of intracellular signaling pathways coupled to mGluRI in D1R-containing striatal neurons of mice expressing EAAC1 leads to reduced D1R protein level and increased stereotyped movement execution. These findings identify new molecular mechanisms by which EAAC1 can shape glutamatergic and dopaminergic signals and control repeated movement execution

    Circadian Modulation of Neurons and Astrocytes Controls Synaptic Plasticity in Hippocampal Area CA1

    Get PDF
    Most animal species operate according to a 24-h period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN modulates hippocampal-dependent memory, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we identify cell-type-specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors. Astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation, and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learning in vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings highlight important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus, and alter the temporal dynamics of cognitive processing

    La poesía lírica española anterior a 1936

    No full text

    NRN-EZ: an application to streamline biophysical modeling of synaptic integration using NEURON

    No full text
    Abstract One of the fundamental goals in neuroscience is to determine how the brain processes information and ultimately controls the execution of complex behaviors. Over the past four decades, there has been a steady growth in our knowledge of the morphological and functional diversity of neurons, the building blocks of the brain. These cells clearly differ not only for their anatomy and ion channel distribution, but also for the type, strength, location, and temporal pattern of activity of the many synaptic inputs they receive. Compartmental modeling programs like NEURON have become widely used in the neuroscience community to address a broad range of research questions, including how neurons integrate synaptic inputs and propagate information through complex neural networks. One of the main strengths of NEURON is its ability to incorporate user-defined information about the realistic morphology and biophysical properties of different cell types. Although the graphical user interface of the program can be used to run initial exploratory simulations, introducing a stochastic representation of synaptic weights, locations and activation times typically requires users to develop their own codes, a task that can be overwhelming for some beginner users. Here we describe NRN-EZ, an interactive application that allows users to specify complex patterns of synaptic input activity that can be integrated as part of NEURON simulations. Through its graphical user interface, NRN-EZ aims to ease the learning curve to run computational models in NEURON, for users that do not necessarily have a computer science background
    corecore