291 research outputs found

    Formation of South Pole-Aitken Basin as the Result of an Oblique Impact: Implications for Melt Volume and Source of Exposed Materials

    Get PDF
    The South Pole-Aitken Basin (SPA) is the largest, deepest, and oldest identified basin on the Moon and contains surfaces that are unique due to their age, composition, and depth of origin in the lunar crust [1-3] (Figure 1). SPA has been a target of interest as an area for robotic sample return in order to determine the age of the basin and the composition and origin of its interior [3-6]. As part of the investigation into the origin of SPA materials there have been several efforts to estimate the likely provenance of regolith material in central SPA [5, 6]. These model estimates suggest that, despite the formation of basins and craters following SPA, the regolith within SPA is dominated by locally derived material. An assumption inherent in these models has been that the locally derived material is primarily SPA impact-melt as opposed to local basement material (e.g. unmelted lower crust). However, the definitive identification of SPA derived impact melt on the basin floor, either by remote sensing [2, 7] or via photogeology [8] is extremely difficult due to the number of subsequent impacts and volcanic activity [3, 4]. In order to identify where SPA produced impact melt may be located, it is important to constrain both how much melt would have been produced in a basin forming impact and the likely source of such melted material. Models of crater and basin formation [9, 10] present clear rationale for estimating the possible volumes and sources of impact melt produced during SPA formation. However, if SPA formed as the result of an oblique impact [11, 12], the volume and depth of origin of melted material could be distinct from similar material in a vertical impact [13]

    What Do Nectaris Basin Impact Melt Rocks Look like and Where Can We Find Them?

    Get PDF
    The formation of the Nectaris basin is a key event defining the stratigraphy of the Moon. Its absolute age, therefore, is a linchpin for lunar bombardment history. Fernandes et al. gave a thorough account of the history of different samples thought to originate in Nectaris, with the upshot being there is little agreement on what samples represent Nectaris, if any. We are revisiting the effort to identify Nectaris basin impact-melt rocks at the Apollo 16 site, to model their emplacement, and to use these parameters to examine other sites where Nectaris impact melt is more abundant and/or more recognizable for potential further study

    Documenting of Geologic Field Activities in Real-Time in Four Dimensions: Apollo 17 as a Case Study for Terrestrial Analogues and Future Exploration

    Get PDF
    During the Apollo exploration of the lunar surface, thousands of still images, 16 mm videos, TV footage, samples, and surface experiments were captured and collected. In addition, observations and descriptions of what was observed was radioed to Mission Control as part of standard communications and subsequently transcribed. The archive of this material represents perhaps the best recorded set of geologic field campaigns and will serve as the example of how to conduct field work on other planetary bodies for decades to come. However, that archive of material exists in disparate locations and formats with varying levels of completeness, making it not easily cross-referenceable. While video and audio exist for the missions, it is not time synchronized, and images taken during the missions are not time or location tagged. Sample data, while robust, is not easily available in a context of where the samples were collected, their descriptions by the astronauts are not connected to them, or the video footage of their collection (if available). A more than five year undertaking to reconstruct and reconcile the Apollo 17 mission archive, from launch through splashdown, has generated an integrated record of the entire mission, resulting in searchable, synchronized image, voice, and video data, with geologic context provided at the time each sample was collected. Through www.apollo17.org the documentation of the field investigation conducted by the Apollo 17 crew is presented in chronologic sequence, with additional context provided by high-resolution Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images and a corresponding digital terrain model (DTM) of the Taurus-Littrow Valley

    Geologic Mapping of the Lunar South Pole Quadrangle (LQ-30)

    Get PDF
    In this study we use recent image, spectral and topographic data to map the geology of the lunar South Pole quadrangle (LQ-30) at 1:2.5M scale [1-7]. The overall objective of this research is to constrain the geologic evolution of LQ-30 (60 -90 S, 0 - 180 ) with specific emphasis on evaluation of a) the regional effects of impact basin formation, and b) the spatial distribution of ejecta, in particular resulting from formation of the South Pole-Aitken (SPA) basin and other large basins. Key scientific objectives include: 1) Determining the geologic history of LQ-30 and examining the spatial and temporal variability of geologic processes within the map area. 2) Constraining the distribution of impact-generated materials, and determining the timing and effects of major basin-forming impacts on crustal structure and stratigraphy in the map area. And 3) assessing the distribution of potential resources (e.g., H, Fe, Th) and their relationships with surface materials

    Geologic Mapping of the Lunar South Pole, Quadrangle LQ-30: Volcanic History and Stratigraphy of Schroedinger Basin

    Get PDF
    In this study we use recent images and topographic data to map the geology and geomorphology of the lunar South Pole quadrangle (LQ-30) at 1:2.5M scale [1-4] in accordance with the Lunar Geologic Mapping Program. Mapping of LQ-30 began during Mest's postdoctoral appointment and has continued under the PG&G Program, from which funding became available in February 2009. Preliminary map-ping and analyses have been done using base materials compiled by Mest, but properly mosaicked and spatially registered base materials are being compiled by the USGS and should be received by the end of June 2009. The overall objective of this research is to constrain the geologic evolution of the lunar South Pole (LQ-30: 60deg -90deg S, 0deg - +/-180deg ) with specific emphasis on evaluation of a) the regional effects of basin formation on the structure and composition of the crust and b) the spatial distribution of ejecta, in particular resulting from formation of the South Pole-Aitken (SPA) basin and other large basins. Key scientific objectives include: 1) Constraining the geologic history of the lunar South Pole and examining the spatial and temporal variability of geologic processes within the map area. 2) Constraining the vertical and lateral structure of the lunar regolith and crust, assessing the distribution of impact-generated materials, and determining the timing and effects of major basin-forming impacts on crustal structure and stratigraphy in the map area. And 3) assessing the distribution of resources (e.g., H, Fe, Th) and their relationships with surface materials

    Lunar Exploration Missions Since 2006

    Get PDF
    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moons Interaction with the Sun); Change-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Change-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Change-3

    ArcGIS Digitization of Apollo Surface Traverses

    Get PDF
    The Apollo surface activities were documented in extraordinary detail, with every action performed by the astronauts while on the surface recorded either in photo, audio, film, or by written testimony [1]. The samples and in situ measurements the astronauts collected while on the lunar surface have shaped our understanding of the geologic history of the Moon, and the earliest history and evolution of the inner Solar System. As part of an ongoing LASERfunded effort, we are digitizing and georeferencing data from astronaut traverses and spatially associating them to available, co-registered remote sensing data. Here we introduce the products produced so far for Apollo 15, 16, and 17 missions

    Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes

    Get PDF
    Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures

    Post-Formation Sodium Loss on the Moon: A Bulk Estimate

    Get PDF
    The Moon and Earth are generally similar in terms of composition, but there exist variations in the abundance of certain elements among the two bodies. These differences are a likely consequence of differing physical evolution of the two bodies over the solar system's history. While previous works have assumed this may be due to conditions during the Moon"TM"s formation, we explore the likelihood that the observed depletion in Sodium in lunar samples may be partially due to post-formation mechanisms. Solar effects, loss from a primordial atmosphere and impacts are some of the dominant post-formation mechanisms that we examine. We describe how our past and current modeling efforts indicate that a significant fraction of the observed depletion of sodium in lunar samples relative to a bulk silicate earth composition may have been due to solar activity, atmospheric loss and impacts. Using profiles of sodium abundances from lunar crustal samples may thus serve as a powerful tool towards exploring conditions on the Moon's surface throughout solar system history. Conditions on the Moon immediately after formation may still be recorded in the lunar crust and may provide a window towards interpreting observations from some of the first rocky exoplanets that will be most amenable to characterization. Potential spatial variation of sodium in the lunar crust may be a relevant consideration for future sample return efforts. Sodium Depletion in the Lunar Crust: Luna

    Science Enabling Exploration: Using LRO to Prepare for Future Missions

    Get PDF
    Discoveries from LRO have transformed our understanding of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. A high lunar exploration priority is the collection of new samples and their return to Earth for comprehensive analysis. The importance of sample return from South Pole-Aitken is well-established [Jolliff et al., this conference], but there are numerous other locations where sample return will yield important advances in planetary science. Using new LRO data, we have defined an achievability envelope based on the physical characteristics of successful lunar landing sites. Those results were then used to define 1km x 1km regions of interest where sample return could be executed, including: the basalt flows in Oceanus Procellarum (22.1N, 53.9W), the Gruithuisen Domes (36.1N, 39.7W), the Dewar cryptomare (2.2S, 166.8E), the Aristarchus pyroclastic deposit (24.8N, 48.5W), the Sulpicius Gallus formation (19.9N, 10.3E), the Sinus Aestuum pyroclastic deposit (5.2N, 9.2W), the Compton-Belkovich volcanic complex (61.5N, 99.9E), the Ina Irregular Mare Patch (18.7N, 5.3E), and the Marius Hills volcanic complex (13.4N, 55.9W). All of these locations represent safe landing sites where sample returns are needed to advance our understanding of the evolution of the lunar interior and the timescales of lunar volcanism. If LRO is still active when any future mission reaches the surface, LRO's capability to rapidly place surface activities into broader geologic context will provide operational advantages. LRO remains a unique strategic asset that continues to address the needs of future missions
    • …
    corecore