56 research outputs found
Optimization of aluminumand its alloys doping by ionic-beamplasmacoating
The surface morphology, chemical composition, microstructure, nanohardness, and tribological properties of systems were investigated. The paper considers the methodology offilmpplicationusingionic-beam irradiation by means of the installation'Solo' with different exposure modes. Irradiation modes which allow an increase in the microhardness of the material and a decrease in its wear rate are defined. Physical substantiation of this phenomenon is given
Π’Π΅Π½Π΄Π΅Π½ΡΠΈΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΠ»Π°ΡΠ΅ΠΆΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π°Π½ΡΠ° ΠΈ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ Π ΠΎΡΡΠΈΠΈ
The article deals with the economic and statistical analysis of trends in the development of statistical data on the balance of payments and the international investment position of Russia over the past 15 years, indicating the sustainable development of the foreign economic sector of the Russian economy.The article begins with addressing the scope and subject matter of the study of the balance of payments and the international investment position of the country. Then the author examines external economic activities for each of the three periods depicting the inο¬uence of the crisis phenomena in the global economy in 1998, 2008 and 2014. Within these periods the author considers the interaction of the world and Russian economies, serious reduction of the external sector of the Russian economy in these periods of crisis and generally the deterioration of the results of foreign economic activity of the country. Comparing the balance of payments and international investment position before and after crisis periods it is possible to note the good state government management of the external sector of the Russian economy, which helped to restore the balance of payments of the country and to increase its net international investment position after the crisis.On a ο¬nal note, it is concluded that the most eο¬ective and eο¬cient for external regulation in a crisis is the so called proο¬table method when the expense of centralized redistribution of income and cash management of ο¬nancial ο¬ows, is formed in the margin in the markets,Β determines the scale and direction of cash ο¬ows, are governed by incorporated in the cost of exported products yield. The market method with the help of tariο¬ pricing and regulation does not allow to fully control and predict the vector of cash ο¬ows in a crisis, redistribute proο¬tability between sectors of the economy and even βsaveβ borrowers in crisis situation.Π ΡΡΠ°ΡΡΠ΅ Π΄Π°Π½ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΎ-ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΠΉ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΠ»Π°ΡΠ΅ΠΆΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π°Π½ΡΠ° ΠΈ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ Π ΠΎΡΡΠΈΠΈ Π·Π° ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ 15 Π»Π΅Ρ, ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡΠΈΠΉ Π² ΡΠ΅Π»ΠΎΠΌ ΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅ Π²Π½Π΅ΡΠ½Π΅ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΠΊΡΠΎΡΠ° ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ. ΠΠΎ Π²Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ ΡΡΠ°ΡΡΠΈ ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡΡΡ ΡΡΡΠ½ΠΎΡΡΡ ΠΈ ΠΎΡΠ½ΠΎΠ²Π½Π°Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ°ΡΠΈΠΊΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ»Π°ΡΠ΅ΠΆΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π°Π½ΡΠ° ΠΈ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΡΡΡΠ°Π½Ρ. Π ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π²Π½Π΅ΡΠ½Π΅ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ ΠΈΠ· ΡΡΠ΅Ρ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ², ΠΎΡΡΠ°ΠΆΠ°ΡΡΠΈΡ
Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΠΊΡΠΈΠ·ΠΈΡΠ½ΡΡ
ΡΠ²Π»Π΅Π½ΠΈΠΉ Π² ΠΌΠΈΡΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ Π² 1998, 2008 ΠΈ 2014 Π³Π³. Π ΡΠ°ΠΌΠΊΠ°Ρ
ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ
ΡΡΠ°ΠΏΠΎΠ² Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΌΠΈΡΠΎΠ²ΠΎΠΉ ΠΈ ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊ, ΠΎΡΠΌΠ΅ΡΠ°ΡΡΡΡ ΡΠ΅ΡΡΠ΅Π·Π½ΡΠ΅ ΡΠΎΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ ΡΠ΅ΠΊΡΠΎΡΠ° ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ Π² ΡΠΊΠ°Π·Π°Π½Π½ΡΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΠΊΡΠΈΠ·ΠΈΡΠΎΠ² ΠΈ Π² ΡΠ΅Π»ΠΎΠΌ ΡΡ
ΡΠ΄ΡΠ΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π²Π½Π΅ΡΠ½Π΅ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΡΡΡΠ°Π½Ρ. Π‘ΡΠ°Π²Π½ΠΈΠ²Π°Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΠΏΠ»Π°ΡΠ΅ΠΆΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π°Π½ΡΠ° ΠΈ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ·ΠΈΡΠΈΠΈ Π΄ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΡΡ
Π² ΡΡΠ°ΡΡΠ΅ ΠΊΡΠΈΠ·ΠΈΡΠ½ΡΡ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ², ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π½Π΅ΡΠ½Π΅ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅ΠΊΡΠΎΡΠ° ΡΠΎΡΡΠΈΠΉΡΠΊΠΎΠΉ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ ΡΠΎ ΡΡΠΎΡΠΎΠ½Ρ ΡΠΎΡΡΠΈΠΉΡΠΊΠΈΡ
Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΠΎΡΠ³Π°Π½ΠΎΠ², ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΠΏΠ»Π°ΡΠ΅ΠΆΠ½ΠΎΠ³ΠΎ Π±Π°Π»Π°Π½ΡΠ° ΡΡΡΠ°Π½Ρ ΠΈ Π½Π°ΡΠ°ΡΡΠΈΡΡ Π΅Π΅ ΡΠΈΡΡΡΡ ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΡ ΠΈΠ½Π²Π΅ΡΡΠΈΡΠΈΠΎΠ½Π½ΡΡ ΠΏΠΎΠ·ΠΈΡΠΈΡ ΠΏΠΎΡΠ»Π΅ ΠΊΡΠΈΠ·ΠΈΡΠΎΠ². Π Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠΈ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡΠ±Π»ΠΈΠΊΠ°ΡΠΈΠΈ Π°Π²ΡΠΎΡΠΎΠΌ ΡΠ΄Π΅Π»Π°Π½Ρ Π²ΡΠ²ΠΎΠ΄Ρ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΌ ΠΈ ΡΠ°Π±ΠΎΡΠΎΡΠΏΠΎΡΠΎΠ±Π½ΡΠΌ Π΄Π»Ρ Π²Π½Π΅ΡΠ½Π΅Π³ΠΎ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π² ΠΊΡΠΈΠ·ΠΈΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ°ΠΊ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΡΠΉ Π΄ΠΎΡ
ΠΎΠ΄Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄, ΠΊΠΎΠ³Π΄Π° Π·Π° ΡΡΠ΅Ρ ΡΠ΅Π½ΡΡΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ΅ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π΅Π½Π΅ΠΆΠ½ΡΡ
Π΄ΠΎΡ
ΠΎΠ΄ΠΎΠ² ΠΈ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠΈΠ½Π°Π½ΡΠΎΠ²ΡΠΌΠΈ ΠΏΠΎΡΠΎΠΊΠ°ΠΌΠΈ ΡΠΎΡΠΌΠΈΡΡΠ΅ΡΡΡ ΠΌΠ°ΡΠΆΠΈΠ½Π°Π»ΡΠ½ΠΎΡΡΡ Π½Π° ΡΡΠ½ΠΊΠ°Ρ
, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΌΠ°ΡΡΡΠ°Π± ΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π΄Π΅Π½Π΅ΠΆΠ½ΡΡ
ΠΏΠΎΡΠΎΠΊΠΎΠ², ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΡΡΡ Π·Π°Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ Π² ΡΡΠΎΠΈΠΌΠΎΡΡΡ ΡΠΊΡΠΏΠΎΡΡΠΈΡΡΠ΅ΠΌΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠΎΠ² Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΡ. Π ΡΠ½ΠΎΡΠ½ΡΠΉ ΡΠΏΠΎΡΠΎΠ± Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π½ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΠ΅Π³ΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π² ΠΏΠΎΠ»Π½ΠΎΠΉ ΠΌΠ΅ΡΠ΅ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΊΡΠΈΠ·ΠΈΡΠ° ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΈ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π²Π΅ΠΊΡΠΎΡ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ Π΄Π΅Π½Π΅ΠΆΠ½ΡΡ
ΠΏΠΎΡΠΎΠΊΠΎΠ², ΠΏΠ΅ΡΠ΅ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ Π΄ΠΎΡ
ΠΎΠ΄Π½ΠΎΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΡΡΠ°ΡΠ»ΡΠΌΠΈ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΈ ΠΈ Π΄Π°ΠΆΠ΅ Β«ΡΠΏΠ°ΡΠ°ΡΡΒ» Π·Π°ΠΊΡΠ΅Π΄ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π·Π°Π΅ΠΌΡΠΈΠΊΠΎΠ²
Surface structure of commercially pure VT1-0 titanium irradiated by an intense pulsed electron beam
It is shown that pulsed electron beam irradiation of commercially pure titanium at a beam energy density of 10 J/cm{2}, pulse duration of 150 [mu]s, number of pulses of N=5 pulses, and pulse repetition frequency of 0.3 Hz with attendant polymorphic [alpha]->[beta]->[ alpha] transformations allows a more than five-fold decrease in the grain and subgrain sizes of the material structure
Combined surface modification of commercial aluminum
The paper analyzes research data on the structure and properties of surface layers of commercially pure A7-grade aluminum subjected to treatment that combines deposition of a thin metal film, intense pulsed electron beam irradiation, and nitriding in low-pressure arc plasma. The analysis shows that the combined method of surface modification provides the formation of a multilayer structure with submicro- and nano-sized phases in the material through a depth of up to 40 ?m, allowing a manifold increase in its surface microhardness and wear resistance (up to 4 and 9 times, respectively) compared to the material core. The main factors responsible for the high surface strength are the saturation of the aluminum lattice with nitrogen atoms and the formation of nano-sized particles of aluminum nitride and iron aluminides
Structure and properties of commercially pure titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator
The paper analyzes the surface structure and properties of commercially pure VT1-0 titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator. The analysis demonstrates that the friction coefficient of the nitrided material decreases more than four times and its wear resistance and microhardness increases more than eight and three times, respectively. The physical mechanisms responsible for the enhancement of strength and tribological properties of the material are discussed
Structure and mechanical characteristics of the hypereutectic silumin subjected to pulsed electron beam treatment
Silumin, aluminum with silicon alloy, is a promising material used for the manufacture of medium-loaded machine parts and mechanisms. High brittleness is one of the main drawbacks of hypereutectic silumin. Modification of a hypereutectic silumin (18-20 wt.% Si) was carried out by irradiating the samples with an intense pulsed electron beam. It was established that irradiation of cast hypoeutectic silumin by an electron beam leads to a significant reduction in the number of micropores, forming a high-speed cellular crystallization structure with a cell size of (0.4-0.6) [mu]m. An irradiation mode allowing to increase the silumin surface layer hardness by more than 4 times, wear resistance - by 1.2 times, to increase ductility by 1.2 times in relation to the initial material was detected (35 J/cm{2}; 200 [mu]s, 20 imp. 0.3 s{-1})
Nanostructuring of a Surface Layer as a Way to Improve the Mechanical Properties of Hypoeutectic Silumin
The irradiation of hypoeutectic silumin 383.1 with an intense pulsed electron beam in the melting mode and rapid crystallization of the surface layer has been performed. A multiphase submicron nanostructured surface layer with a thickness of up to 70 nm has been formed. Mechanical tests of the irradiated silumin samples in tensile experiments have been carried out. A significant increase in strength and plastic properties of silumin irradiated with an electron beam has been established. Features and patterns in the distribution of displacement fields in the deformation process in surface layers of the samples in realtime have been identified by digital image correlation method using the optical measuring system VIC-3D
Nanostructuring of a Surface Layer as a Way to Improve the Mechanical Properties of Hypoeutectic Silumin
The irradiation of hypoeutectic silumin 383.1 with an intense pulsed electron beam in the melting mode and rapid crystallization of the surface layer has been performed. A multiphase submicron nanostructured surface layer with a thickness of up to 70 nm has been formed. Mechanical tests of the irradiated silumin samples in tensile experiments have been carried out. A significant increase in strength and plastic properties of silumin irradiated with an electron beam has been established. Features and patterns in the distribution of displacement fields in the deformation process in surface layers of the samples in realtime have been identified by digital image correlation method using the optical measuring system VIC-3D
- β¦