272 research outputs found

    The ν\nu-cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering

    Full text link
    We discuss a small-scale experiment, called ν\nu-cleus, for the first detection of coherent neutrino-nucleus scattering by probing nuclear-recoil energies down to the 10 eV-regime. The detector consists of low-threshold CaWO4_4 and Al2_2O3_3 calorimeter arrays with a total mass of about 10 g and several cryogenic veto detectors operated at millikelvin temperatures. Realizing a fiducial volume and a multi-element target, the detector enables active discrimination of γ\gamma, neutron and surface backgrounds. A first prototype Al2_2O3_3 device, operated above ground in a setup without shielding, has achieved an energy threshold of ∼20{\sim20} eV and further improvements are in reach. A sensitivity study for the detection of coherent neutrino scattering at nuclear power plants shows a unique discovery potential (5σ\sigma) within a measuring time of ≲2{\lesssim2} weeks. Furthermore, a site at a thermal research reactor and the use of a radioactive neutrino source are investigated. With this technology, real-time monitoring of nuclear power plants is feasible.Comment: 14 pages, 19 figure

    Physiotherapists and Osteopaths’ Attitudes: Training in Management of Temporomandibular Disorders

    Get PDF
    Temporomandibular disorders (TMDs) are a condition which has multifactorial etiology. The most acknowledged method to classify TMDs is the diagnostic criteria (DC) introduced firstly by Dworkin. This protocol considers different aspects that are not only biological, but even psychosocial. Diagnosis is often based on anamnesis, physical examination and instrumental diagnosis. TMDs are classified as intra-articular and/or extra-articular disorders. Common signs and symptoms include jaw pain and dysfunction, earache, headache, facial pain, limitation to opening the mouth, ear pain and temporomandibular joint (TMJ) noises. This study regards two kind of clinicians that started in the last years to be more involved in the treatment of TMDs: osteopaths (OOs) and physiotherapists (PTs). The purpose is to analyze their attitude and clinical approach on patients affected by TMDs. Four hundred therapists answered an anonymous questionnaire regarding TMJ and TMDs. OOs showed greater knowledges on TMDs and TMJ and, the therapists with both qualifications seemed to be most confident in treating patients with TMDs. In conclusion this study highlights OOs and all the clinicians with this qualification, have a higher confidence in treating patients with TMD than the others. Dentists and orthodontists, according to this study, should co-work with OOs and PTs, because they are the specialists more requested by them than other kinds of specialists

    Exploring CEvNS with NUCLEUS at the Chooz Nuclear Power Plant

    Full text link
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of (anti-)neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study CEν\nuNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low energy threshold and a time response fast enough to be operated in above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measure CEν\nuNS of reactor antineutrinos. A new experimental site, denoted the Very-Near-Site (VNS) at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 GWth_{\mathrm{th}} reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental setup with dedicated active and passive background reduction techniques is presented. Furthermore, the feasibility to operate the NUCLEUS detectors in coincidence with an active muon-veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the promising physics potential of NUCLEUS at the Chooz nuclear power plant

    The CRESST Dark Matter Search

    Full text link
    We present first competitive results on WIMP dark matter using the phonon-light-detection technique. A particularly strong limit for WIMPs with coherent scattering results from selecting a region of the phonon-light plane corresponding to tungsten recoils. The observed count rate in the neutron band is compatible with the rate expected from neutron background. CRESST is presently being upgraded with a 66 channel SQUID readout system, a neutron shield and a muon veto system. This results in a significant improvement in sensitivity.Comment: 6 pages, 3 figures, to be published in the proceedings of the 5th International Workshop on the Identification and Detection of Dark Matter IDM 2004, Edinburgh, Sept. 2004, World Scientifi
    • …
    corecore