43 research outputs found

    Measurements of Z-boson resonance parameters in e+e- annihilation

    Get PDF
    We have measured the mass of the Z boson to be 91.14±0.12 GeV/c^2, and its width to be 2.42-0.35+0.45 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.46±0.10 GeV, corresponding to 2.8±0.6 neutrino species, with a 95%-confidence-level upper limit of 3.9

    First measurements of hadronic decays of the Z boson

    Get PDF
    We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision

    Studies of jet production rates in e + e − annihilation at E cm =29 GeV

    Full text link
    Production rates of multijet hadronic final states are studied in e + e − annihilation at 29 GeV center of mass energy. QCD shower model calculations with exact first order matrix element weighting at the first gluon vertex are capable of reproducing the observed multijet event rates over a large range of jet pair masses. The method used to reconstruct jets is well suited for directly comparing experimental jet rates with parton rates calculated in perturbative QCD. Evidence for the energy dependene of α s is obtained by comparing the observed production rates of 3-jet events with results of similar studies performed at higher center of mass energies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47886/1/10052_2005_Article_BF01506527.pd

    Initial measurements of Z-boson resonance parameters in e+e- annihilation

    Get PDF
    We have measured the mass of the Z boson to be 91.11±0.23 GeV/c^2, and its width to be 1.61-0.43+0.60 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.62±0.23 GeV, corresponding to 3.8±1.4 neutrino species

    A luminosity monitor for the Mark II detector at the SLC

    Full text link
    We describe the design and performance of the Mark II small angle monitor (SAM) used for measurements of Bhabha scattering at the SLC. We also present results of SLC luminosity measurements made with SAM for the first determination of Z boson resonance parameters in e+e- annihilation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29946/1/0000304.pd
    corecore