89 research outputs found
Over-expansion capacity and stent design model: an update with contemporary DES platforms
© 2016 The AuthorsBackground Previously, we examined the difference in stent designs across different sizes for six widely used Drug Eluting Stents (DESs). Although stent post-dilatation to larger diameter is commonly done, typically in the setting of long tapering segment or left-main PCI, there is an increasing recognition that information with regard to the different stent model designs has a critical impact on overexpansion results. This study aims to provide an update on stent model designs for contemporary DES platforms as well as test overexpansion results under with oversized post-dilatation. Methods and results We studied 6 different contemporary commercially available DES platforms: Synergy, Xience Xpedition, Ultimaster, Orsiro, Resolute Onyx and Biomatrix Alpha. We investigated for each platform the difference in stent designs across different sizes and results obtained after post-expansion with larger balloon sizes. The stents were deployed at nominal diameter and subsequently over expanded using increasingly large post dilatation balloon sizes (4.0, 5.0 and 6.0 mm at 14ATM). Light microscopy was used to measure the changes in stent geometry and lumen diameter after over-expansion. For each respective DES platform, the MLD observed after overexpansion of the largest stent size available with a 6.0 mm balloon was 5.7 mm for Synergy, 5.6 mm for Xience, 5.2 mm for Orsiro, 5.8 mm for Ultimaster, 5.5 mm for 4 mm Onyx (5.9 mm for the 5 mm XL size) and 5.8 mm for BioMatrix Chroma. Conclusion This update presents valuable novel insights that may be helpful for careful selection of stent size for contemporary DES based on model designs. Such information is especially critical in left main bifurcation stenosis treatment where overexpansion to larger oversized diameter may be required to ensure full stent apposition
Optimal antiplatelet strategy after transcatheter aortic valve implantation: a meta-analysis
Objective International guidelines recommend the use of dual antiplatelet therapy (DAPT) after transcatheter aortic valve implantation (TAVI). The recommended duration of DAPT varies between guidelines. In this two-part study, we (1) performed a structured survey of 45 TAVI centres from around the world to determine if there is consensus among clinicians regarding antiplatelet therapy after TAVI; and then (2) performed a systematic review of all suitable studies (randomised controlled trials (RCTs) and registries) to determine if aspirin monotherapy can be used instead of DAPT. Methods A structured electronic survey regarding antiplatelet use after TAVI was completed by 45 TAVI centres across Europe, Australasia and the USA. A systematic review of TAVI RCTs and registries was then performed comparing DAPT duration and incidence of stroke, bleeding and death. A variance weighted least squared metaregression was then performed to determine the relationship of antiplatelet therapy and adverse events. Results 82.2% of centres routinely used DAPT after TAVI. Median duration was 3 months. 13.3% based their practice on guidelines. 11 781 patients (26 studies) were eligible for the metaregression. There was no benefit of DAPT over aspirin monotherapy for stroke (P=0.49), death (P=0.72) or bleeding (P=0.91). Discussion Aspirin monotherapy appears to be as safe and effective as DAPT after TAVI
Estimation of coronary wave intensity analysis using noninvasive techniques and its application to exercise physiology
Wave intensity analysis (WIA) has found particular applicability in the coronary circulation where it can quantify traveling waves that accelerate and decelerate blood flow. The most important wave for the regulation of flow is the backward-traveling decompression wave (BDW). Coronary WIA has hitherto always been calculated from invasive measures of pressure and flow. However, recently it has become feasible to obtain estimates of these waveforms noninvasively. In this study we set out to assess the agreement between invasive and noninvasive coronary WIA at rest and measure the effect of exercise. Twenty-two patients (mean age 60) with unobstructed coronaries underwent invasive WIA in the left anterior descending artery (LAD). Immediately afterwards, noninvasive LAD flow and pressure were recorded and WIA calculated from pulsed-wave Doppler coronary flow velocity and central blood pressure waveforms measured using a cuff-based technique. Nine of these patients underwent noninvasive coronary WIA assessment during exercise. A pattern of six waves were observed in both modalities. The BDW was similar between invasive and noninvasive measures [peak: 14.9 ± 7.8 vs. -13.8 ± 7.1 × 10(4) W·m(-2)·s(-2), concordance correlation coefficient (CCC): 0.73, P < 0.01; cumulative: -64.4 ± 32.8 vs. -59.4 ± 34.2 × 10(2) W·m(-2)·s(-1), CCC: 0.66, P < 0.01], but smaller waves were underestimated noninvasively. Increased left ventricular mass correlated with a decreased noninvasive BDW fraction (r = -0.48, P = 0.02). Exercise increased the BDW: at maximum exercise peak BDW was -47.0 ± 29.5 × 10(4) W·m(-2)·s(-2) (P < 0.01 vs. rest) and cumulative BDW -19.2 ± 12.6 × 10(3) W·m(-2)·s(-1) (P < 0.01 vs. rest). The BDW can be measured noninvasively with acceptable reliably potentially simplifying assessments and increasing the applicability of coronary WIA
Management of Acute Coronary Syndromes During the Coronavirus Disease 2019 Pandemic: Deviations from Guidelines and Pragmatic Considerations for Patients and Healthcare Workers
Coronavirus disease 2019 (COVID-19) is forcing cardiology departments to rapidly adapt existing clinical guidelines to a new reality and this is especially the case for acute coronary syndrome pathways. In this focused review, the authors discuss how COVID-19 is affecting acute cardiology care and propose pragmatic guideline modifications for the diagnosis and management of acute coronary syndrome patients, particularly around the appropriateness of invasive strategies as well as length of hospital stay. The authors also discuss the use of personal protective equipment for healthcare workers in cardiology. Based on shared global experiences and growing peer-reviewed literature, it is possible to put in place modified acute coronary syndrome treatment pathways to offer safe pragmatic decisions to patients and staff
Bioresorbable vascular scaffold radial expansion and conformation compared to a metallic platform: Insights from in vitro expansion in a coronary artery lesion model
Aims: This study aimed to compare the acute expansion behaviour of a polymer-based bioresorbable scaffold and a second-generation metallic DES platform in a realistic coronary artery lesion model. Experimental mechanical data with conventional methods have so far shown little difference between metallic stents and currently available polymer-based bioresorbable scaffolds (BRS). Nevertheless, differences in acute results have been observed in clinical studies comparing BRS directly with metallic DES platforms. Methods and results: We examined the expansion behaviour of the bioresorbable vascular scaffold (3.0
718 mm Absorb BVS; Abbott Vascular, Santa Clara, CA, USA) and a metallic DES (3.0
718 mm XIENCE Prime; Abbott Vascular) after expansion at 37\ub0C using identical coronary artery stenosis models (in total 12 experiments were performed). Device expansion was compared during balloon inflation and after deflation using microscopy to allow assessment of plaque recoil. Minimal lumen diameter (MLD) and minimal lumen area (MLA) and stent eccentricity were quantified from optical coherence tomography (OCT) imaging at nominal diameter and after post-dilation at 18 atm. The MLA in the models with BVS deployed was 4.92\ub10.17 mm2 while in the metallic DES it was 5.40\ub10.13 mm2 (p=0.02) at nominal pressure (NP), and 5.41\ub10.20 and 6.07\ub10.25 mm2 (p=0.02), respectively, after expansion at 18 atm. Stent eccentricity index at the MLA was 0.71\ub10.02 in BVS compared to 0.81\ub10.02 in the metal stent at NP (p=0.004), and 0.73\ub10.03 compared to 0.75\ub10.02 at 18 atm (p=0.39). Conclusions: Results obtained in this in vitro lesion model were comparable to the results in randomised clinical trials comparing BVS and XIENCE stents in vivo. Such models may be useful in future BRS developments to predict their acute response in vivo in eccentric lesions
Determining the Predominant Lesion in Patients With Severe Aortic Stenosis and Coronary Stenoses: A Multicenter Study Using Intracoronary Pressure and Flow
Background: Patients with severe aortic stenosis (AS) often have coronary artery disease. Both the aortic valve and the coronary disease influence the blood flow to the myocardium and its ability to respond to stress; leading to exertional symptoms. In this study, we aim to quantify the effect of severe AS on the coronary microcirculation and determine if this is influenced by any concomitant coronary disease. We then compare this to the effect of coronary stenoses on the coronary microcirculation. Methods: Group 1: 55 patients with severe AS and intermediate coronary stenoses treated with transcatheter aortic valve implantation (TAVI) were included. Group 2: 85 patients with intermediate coronary stenoses and no AS treated with percutaneous coronary intervention were included. Coronary pressure and flow were measured at rest and during hyperemia in both groups, before and after TAVI (group 1) and before and after percutaneous coronary intervention (group 2). Results: Microvascular resistance over the wave-free period of diastole increased significantly post-TAVI (pre-TAVI, 2.71±1.4 mm Hg·cm·s−1 versus post-TAVI 3.04±1.6 mm Hg·cm·s−1 [P=0.03]). Microvascular reserve over the wave-free period of diastole significantly improved post-TAVI (pre-TAVI 1.88±1.0 versus post-TAVI 2.09±0.8 [P=0.003]); this was independent of the severity of the underlying coronary stenosis. The change in microvascular resistance post-TAVI was equivalent to that produced by stenting a coronary lesion with an instantaneous wave-free ratio of ≤0.74. Conclusions: TAVI improves microcirculatory function regardless of the severity of underlying coronary disease. TAVI for severe AS produces a coronary hemodynamic improvement equivalent to the hemodynamic benefit of stenting coronary stenoses with instantaneous wave-free ratio values <0.74. Future trials of physiology-guided revascularization in severe AS may consider using this value to guide treatment of concomitant coronary artery disease
A randomised controlled trial to investigate the use of acute coronary syndrome therapy in patients hospitalised with COVID-19: the C19-ACS trial
BACKGROUND: Patients hospitalised with COVID-19 suffer thrombotic complications. Risk factors for poor outcomes are shared with coronary artery disease. OBJECTIVES: To investigate efficacy of an acute coronary syndrome regimen in patients hospitalised with COVID-19 and coronary disease risk factors. PATIENTS/METHODS: A randomised controlled open-label trial across acute hospitals (UK and Brazil) added aspirin, clopidogrel, low-dose rivaroxaban, atorvastatin, and omeprazole to standard care for 28-days. Primary efficacy and safety outcomes were 30-day mortality and bleeding. The key secondary outcome was a daily clinical status (at home, in hospital, on intensive therapy unit admission, death). RESULTS: 320 patients from 9 centres were randomised. The trial terminated early due to low recruitment. At 30 days there was no significant difference in mortality (intervention: 11.5% vs control: 15%, unadjusted OR 0.73, 95%CI 0.38 to 1.41, p=0.355). Significant bleeds were infrequent and not significantly different between the arms (intervention: 1.9% vs control 1.9%, p>0.999). Using a Bayesian Markov longitudinal ordinal model, it was 93% probable that intervention arm participants were more likely to transition to a better clinical state each day (OR 1.46, 95% CrI 0.88 to 2.37, Pr(Beta>0)=93%; adjusted OR 1.50, 95% CrI 0.91 to 2.45, Pr(Beta>0)=95%) and median time to discharge home was two days shorter (95% CrI -4 to 0, 2% probability that it was worse). CONCLUSIONS: Acute coronary syndrome treatment regimen was associated with a reduction in the length of hospital stay without an excess in major bleeding. A larger trial is needed to evaluate mortality
Coronary Hemodynamics in Patients With Severe Aortic Stenosis and Coronary Artery Disease Undergoing Transcatheter Aortic Valve Replacement: Implications for Clinical Indices of Coronary Stenosis Severity.
In this study, a systematic analysis was conducted of phasic intracoronary pressure and flow velocity in patients with severe aortic stenosis (AS) and coronary artery disease, undergoing transcatheter aortic valve replacement (TAVR), to determine how AS affects: 1) phasic coronary flow; 2) hyperemic coronary flow; and 3) the most common clinically used indices of coronary stenosis severity, instantaneous wave-free ratio and fractional flow reserve.
A significant proportion of patients with severe aortic stenosis (AS) have concomitant coronary artery disease. The effect of the valve on coronary pressure, flow, and the established invasive clinical indices of stenosis severity have not been studied.
Twenty-eight patients (30 lesions, 50.0% men, mean age 82.1 ± 6.5 years) with severe AS and coronary artery disease were included. Intracoronary pressure and flow assessments were performed at rest and during hyperemia immediately before and after TAVR.
Flow during the wave-free period of diastole did not change post-TAVR (29.78 ± 14.9 cm/s vs. 30.81 ± 19.6 cm/s; p = 0.64). Whole-cycle hyperemic flow increased significantly post-TAVR (33.44 ± 13.4 cm/s pre-TAVR vs. 40.33 ± 17.4 cm/s post-TAVR; p = 0.006); this was secondary to significant increases in systolic hyperemic flow post-TAVR (27.67 ± 12.1 cm/s pre-TAVR vs. 34.15 ± 17.5 cm/s post-TAVR; p = 0.02). Instantaneous wave-free ratio values did not change post-TAVR (0.88 ± 0.09 pre-TAVR vs. 0.88 ± 0.09 post-TAVR; p = 0.73), whereas fractional flow reserve decreased significantly post-TAVR (0.87 ± 0.08 pre-TAVR vs. 0.85 ± 0.09 post-TAVR; p = 0.001).
Systolic and hyperemic coronary flow increased significantly post-TAVR; consequently, hyperemic indices that include systole underestimated coronary stenosis severity in patients with severe AS. Flow during the wave-free period of diastole did not change post-TAVR, suggesting that indices calculated during this period are not vulnerable to the confounding effect of the stenotic aortic valve
- …