22 research outputs found

    Human mesenchymal stem cell combined with a new strontium-enriched bioactive glass: An ex-vivo model for Bone Regeneration

    Get PDF
    A 3D cellular model that mimics the potential clinical application of a biomaterial is here applied for the first time to a bioactive glass, in order to assess its biological potential. A recently developed bioactive glass (BGMS10), whose composition contained strontium and magnesium, was produced in the form of granules and fully investigated in terms of biocompatibility in vitro. Apart from standard biological characterization (Simulated Body Fluid (SBF) testing and biocompatibility as per ISO10993), human bone marrow mesenchymal stromal/stem cells (BM-MSCs) were used to investigate the performance of the bioactive glass granules in an innovative 3D cellular model. The results showed that BGMS10 supported human BM-MSCs adhesion, colonization, and bone differentiation. Thus, bioactive glass granules seem to drive osteogenic differentiation and thus look particularly promising for orthopedic applications, bone tissue engineering and regenerative medicine

    Label-Free Optical Sensing and Medical Grade Resins: An Advanced Approach to Investigate Cell–Material Interaction and Biocompatibility

    Get PDF
    : The Corning Epic® label-free (ELF) system is an innovative technology widely used in drug discovery, immunotherapy, G-protein-associated studies, and biocompatibility tests. Here, we challenge the use of ELF to further investigate the biocompatibility of resins used in manufacturing of blood filters, a category of medical devices representing life-saving therapies for the increasing number of patients with kidney failure. The biocompatibility assays were carried out by developing a cell model aimed at mimicking the clinical use of the blood filters and complementing the existing cytotoxicity assay requested by ISO10993-5. Experiments were performed by putting fibroblasts in both direct contact with two types of selected resins, and indirect contact by means of homemade customized well inserts that were precisely designed and developed for this technology. For both types of contact, fibroblasts were cultured in medium and human plasma. ELF tests confirmed the biocompatibility of both resins, highlighting a statistically significant different biological behavior of a polyaromatic resin compared to control and ion-exchanged resin, when materials were in indirect contact and soaking with plasma. Overall, the ELF test is able to mimic clinical scenarios and represents a promising approach to investigate biocompatibility, showing peculiar biological behaviors and suggesting the activation of specific intracellular pathways

    A Novel 3D In Vitro Platform for Pre-Clinical Investigations in Drug Testing, Gene Therapy, and Immuno-oncology.

    Get PDF
    Tumors develop within complex cell-to-cell interactions, with accessory cells playing a relevant role starting in the early phases of cancer progression. This event occurs in a three-dimensional (3D) environment, which to date, has been difficult to reproduce in vitro due to its complexity. While bi-dimensional cultures have generated substantial data, there is a progressive awareness that 3D culture strategies may rapidly increase the understanding of tumor development and be used in anti-cancer compound screening and for predicting response to new drugs utilizing personalized approaches. However, simple systems capable of rapidly rebuilding cancer tissues ex-vivo in 3D are needed and could be used for a variety of applications. Therefore, we developed a flat, handheld and versatile 3D cell culture bioreactor that can be loaded with tumor and/or normal cells in combination which can be monitored using a variety of read-outs. This biocompatible device sustained 3D growth of tumor cell lines representative of various cancers, such as pancreatic and breast adenocarcinoma, sarcoma, and glioblastoma. The cells repopulated the thin matrix which was completely separated from the outer space by two gas-permeable membranes and was monitored in real-time using both microscopy and luminometry, even after transportation. The device was tested in 3D cytotoxicity assays to investigate the anti-cancer potential of chemotherapy, biologic agents, and cell-based therapy in co-cultures. The addition of luciferase in target cancer cells is suitable for comparative studies that may also involve parallel in vivo investigations. Notably, the system was challenged using primary tumor cells harvested from lung cancer patients as an innovative predictive functional assay for cancer responsiveness to checkpoint inhibitors, such as nivolumab. This bioreactor has several novel features in the 3D-culture field of research, representing a valid tool useful for cancer investigations, drug screenings, and other toxicology approaches

    Novel bioprinted 3D model to human fibrosis investigation

    Get PDF
    Fibrosis is shared in multiple diseases with progressive tissue stiffening, organ failure and limited therapeutic options. This unmet need is also due to the lack of adequate pre-clinical models to mimic fibrosis and to be challenged novel by anti-fibrotic therapeutic venues. Here using bioprinting, we designed a novel 3D model where normal human healthy fibroblasts have been encapsulated in type I collagen. After stimulation by Transforming Growth factor beta (TGFβ), embedded cells differentiated into myofibroblasts and enhanced the contractile activity, as confirmed by the high level of α − smooth muscle actin (αSMA) and F-actin expression. As functional assays, SEM analysis revealed that after TGFβ stimulus the 3D microarchitecture of the scaffold was dramatically remolded with an increased fibronectin deposition with an abnormal collagen fibrillar pattern. Picrius Sirius Red staining additionally revealed that TGFβ stimulation enhanced of two logarithm the collagen fibrils neoformation in comparison with control. These data indicate that by bioprinting technology, it is possible to generate a reproducible and functional 3D platform to mimic fibrosis as key tool for drug discovery and impacting on animal experimentation and reducing costs and time in addressing fibrosis

    A new strategy to prevent biofilm and clot formation in medical devices: the use of atmospheric non-thermal plasma assisted deposition of silver-based nanostructured coatings

    Get PDF
    In industrialized countries, health care associated infections, the fourth leading cause of dis- ease, are a major health issue. At least half of all cases of nosocomial infections are associ- ated with medical devices. Antibacterial coatings arise as an important approach to restrict the nosocomial infection rate without side effects and the development of antibiotic resis- tance. Beside nosocomial infections, clot formation affects cardiovascular medical devices and central venous catheters implants. In order to reduce and prevent such infection, we develop a plasma-assisted process for the deposition of nanostructured functional coatings on flat substrates and mini catheters. Silver nanoparticles (Ag NPs) are synthesized exploit- ing in-flight plasma-droplet reactions and are embedded in an organic coating deposited through hexamethyldisiloxane (HMDSO) plasma assisted polymerization. Coating stability upon liquid immersion and ethylene oxide (EtO) sterilization is assessed through chemical and morphological analysis carried out by means of Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). In the perspective of future clinical appli- cation, an in vitro analysis of anti-biofilm effect has been done. Moreover, we employed a murine model of catheter-associated infection which further highlighted the performance of Ag nanostructured films in counteract biofilm formation. The anti-clot performances coupled by haemo- and cytocompatibility assays have also been performed

    Autologous Marrow Mesenchymal Stem Cell Driving Bone Regeneration in a Rabbit Model of Femoral Head Osteonecrosis

    Get PDF
    Osteonecrosis of the femoral head (ONFH) is a progressive degenerative disease that ultimately requires a total hip replacement. Mesenchymal stromal/stem cells (MSCs), particularly the ones isolated from bone marrow (BM), could be promising tools to restore bone tissue in ONFH. Here, we established a rabbit model to mimic the pathogenic features of human ONFH and to challenge an autologous MSC-based treatment. ON has been originally induced by the synergic combination of surgery and steroid administration. Autologous BM-MSCs were then implanted in the FH, aiming to restore the damaged tissue. Histological analyses confirmed bone formation in the BM-MSC treated rabbit femurs but not in the controls. In addition, the model also allowed investigations on BM-MSCs isolated before (ON-BM-MSCs) and after (ON+BM-MSCs) ON induction to dissect the impact of ON damage on MSC behavior in an affected microenvironment, accounting for those clinical approaches foreseeing MSCs generally isolated from affected patients. BM-MSCs, isolated before and after ON induction, revealed similar growth rates, immunophenotypic profiles, and differentiation abilities regardless of the ON. Our data support the use of ON+BM-MSCs as a promising autologous therapeutic tool to treat ON, paving the way for a more consolidated use into the clinical settings

    Human Adipose Mesenchymal Stromal/Stem Cells Improve Fat Transplantation Performance

    Get PDF
    The resorption rate of autologous fat transfer (AFT) is 40–60% of the implanted tissue, requiring new surgical strategies for tissue reconstruction. We previously demonstrated in a rabbit model that AFT may be empowered by adipose-derived mesenchymal stromal/stem cells (AD-MSCs), which improve graft persistence by exerting proangiogenic/anti-inflammatory effects. However, their fate after implantation requires more investigation. We report a xenograft model of adipose tissue engineering in which NOD/SCID mice underwent AFT with/without human autologous AD-MSCs and were monitored for 180 days (d). The effect of AD-MSCs on AFT grafting was also monitored by evaluating the expression of CD31 and F4/80 markers. Green fluorescent protein-positive AD-MSCs (AD-MSC-GFP) were detected in fibroblastoid cells 7 days after transplantation and in mature adipocytes at 60 days, indicating both persistence and differentiation of the implanted cells. This evidence also correlated with the persistence of a higher graft weight in AFT-AD-MSC compared to AFT alone treated mice. An observation up to 180 d revealed a lower resorption rate and reduced lipidic cyst formation in the AFT-AD-MSC group, suggesting a long-term action of AD-MSCs in support of AFT performance and an anti-inflammatory/proangiogenic activity. Together, these data indicate the protective role of adipose progenitors in autologous AFT tissue resorption

    A new Approach to Investigate Biofilm Formation in Medical Devices

    No full text
    Abstracts from the 10th Congress of the Vascular Access Society, 5-8 April 2017, Ljubljana, Sloveni
    corecore