4 research outputs found

    Vascular Supply of the Metacarpophalangeal Joint

    Get PDF
    OBJECTIVE: To describe in detail the arterial vasculature of metacarpophalangeal joints 2–5 on cadaver specimens and to compare it to ultrasound imaging of healthy subjects. METHODS: Eighteen hands of donated human cadavers were arterially injected and investigated with either corrosion casting or cryosectioning. Each layer of cryosectioned specimens was photographed in high-resolution. Images were then segmented for arterial vessels of the metacarpophalangeal (MCP) joints 2–5. The arterial pattern of the joints was reconstructed from the segmented images and from the corrosion cast specimens. Both hands of ten adult healthy volunteers were scanned focusing on the vasculature of the same joints with high-end ultrasound imaging, including color Doppler. Measurements were made on both cryosectioned arteries and Doppler images. RESULTS: The arterial supply of MCP joints 2–5 divides into a metacarpal and a phalangeal territory, respectively. The metacarpal half receives arteries from the palmar metacarpal arteries or proper palmar digital arteries, while the phalangeal half is supplied by both proper and common palmar digital arteries. Comparing anatomical and ultrasonographic results, we determined the exact anatomic location of normal vessels using Doppler images acquired of healthy joints. All, except three branches, were found with less than 50% frequency using ultrasound. Doppler signals were identified significantly more frequently in MCP joints 2–3 than on 4–5 (p < 0.0001). Similarly, Doppler signals differed in the number of detectable small, intraarticular vessels (p < 0.009), but not that of the large extraarticular ones (p < 0.1373). When comparing measurements acquired by ultrasound and on cadaver vessels, measurements using the former technique were found to be larger in all joints (p < 0.0001). CONCLUSION: Using morphological and ultrasonographic techniques, our study provides a high-resolution anatomical maps and an essential reference data set on the entire arterial vasculature of healthy human MCP 2–5 joints. We found that Doppler signal could be detected in less than 50% of the vessels of healthy volunteers except three locations. Intraarticular branches were detected with ultrasound imaging significantly more frequently on healthy MCP 2–3 joints, which should be taken into account when inflammatory and normal Doppler signals are evaluated. Our study also provides reference data for future, higher-resolution imaging techniques

    Preclinical randomised safety, efficacy and physiologic study of the silicon dioxide inert-coated Axetis and bare metal stent: Short-, mid- and long-term outcome

    Full text link
    Aims: To evaluate the short-, mid- and long-term safety, efficacy and vascular physiology of Axetis silicon dioxide (SiO2, abrading the micropores) inert-coated stent implantation in a randomised preclinical setting. Methods and results: Coronary arteries of domestic pigs were randomised to receive either Axetis or BMS (same design) stents with one-, three- and six-month follow-up (FUP), controlled by coronary angiography, optical coherence tomography (OCT), intravascular ultrasound (IVUS) and histology (n=32). The time-dependent vasomotor reaction of coronary arteries to stenting was measured using modified myography (n=12). Complete endothelialisation of the Axetis stent was confirmed by OCT, IVUS and histology at one-month FUP. Histopathology revealed continuous healing of the vessel wall with a gradual reduction of inflammation and fibrin score during the six-month FUP in both stent types. Significantly smaller neointimal area and %area stenosis were measured in Axetis stents compared with BMS at each FUP time point. Vascular reactivity measurements showed significantly better endothelium-dependent vasodilation of stented arteries with Axetis implantation. Conclusions: Implantation of the Axetis SiO2-coated stent resulted in a significantly better safety, efficacy and vessel physiology profile compared with BMS of the same design with a continuous decrease in vessel inflammation during the six-month FUP

    Technical feasibility of transperineal MR-guided prostate interventions in a low-field open MRI unit: canine study.

    Full text link
    Magnetic resonance imaging (MRI) provides superior visualization of the prostate, its substructure, surrounding tissues, and, most important, focal lesions or cancer. The purpose of our canine study was to demonstrate the feasibility of a low-field (0.35 T) transperineal system that enables precise MR image guidance of prostate interventions. The canines were placed in the right lateral decubitus position. Template reconstruction, trajectory planning, contouring were based on T2-weighted FSE images. For image guidance and target confirmation, fast gradient spoiled-echo (FSPGR) sequence was used. MR compatible coaxial needles were manually inserted through the perineum to the base of the prostate. After satisfactory position was confirmed, brachytherapy catheters were placed through the coaxial needles. The mean deviation of the needle displacements was 2.9 mm with a median value of 2.7 mm. 97% of the errors were less than 4.0 mm. The needle placement accuracy was modelled by the Rayleigh distribution with a sigma value of 2.3 mm. Visual confirmation of needle placements was demonstrated on pathology tissue slices. The time needed for each step was: anaesthesia - 15 min, setup and positioning - 15 min, initial imaging - 15 min, template registration, projection - 15 min, contouring, trajectory planning, insertion of 12 needles - 60 min Based on our canine experiences our method seems to be a promising approach for performing feasible, accurate, reliable and high-quality prostate MR guidance within a reasonable time span
    corecore