1,557 research outputs found

    GRBs and fundamental physics

    Full text link
    Gamma-ray bursts (GRBs) are short and intense flashes at the cosmological distances, which are the most luminous explosions in the Universe. The high luminosities of GRBs make them detectable out to the edge of the visible universe. So, they are unique tools to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal evolution of the Universe. First, they can be used to constrain the history of cosmic acceleration and the evolution of dark energy in a redshift range hardly achievable by other cosmological probes. Second, long GRBs are believed to be formed by collapse of massive stars. So they can be used to derive the high-redshift star formation rate, which can not be probed by current observations. Moreover, the use of GRBs as cosmological tools could unveil the reionization history and metal evolution of the Universe, the intergalactic medium (IGM) properties and the nature of first stars in the early universe. But beyond that, the GRB high-energy photons can be applied to constrain Lorentz invariance violation (LIV) and to test Einstein's Equivalence Principle (EEP). In this paper, we review the progress on the GRB cosmology and fundamental physics probed by GRBs.Comment: 38 pages, 18 figures, Review based on ISSI workshop "Gamma-Ray Bursts: a Tool to Explore the Young Universe" (2015, Beijing, China), accepted for publication in Space Science Review

    Temperature and Kinematics of CIV Absorption Systems

    Full text link
    We use Keck HIRES spectra of three intermediate redshift QSOs to study the physical state and kinematics of the individual components of CIV selected heavy element absorption systems. Fewer than 8 % of all CIV lines with column densities greater than 10^{12.5} cm^{-2} have Doppler parameters b < 6 km/s. A formal decomposition into thermal and non-thermal motion using the simultaneous presence of SiIV gives a mean thermal Doppler parameter b_{therm}(CIV) = 7.2 km/s, corresponding to a temperature of 38,000 K although temperatures possibly in excess of 300,000 K occur occasionally. We also find tentative evidence for a mild increase of temperature with HI column density. Non-thermal motions within components are typically small (< 10 km/s) for most systems, indicative of a quiescent environment. The two-point correlation function (TPCF) of CIV systems on scales up to 500 km/s suggests that there is more than one source of velocity dispersion. The shape of the TPCF can be understood if the CIV systems are caused by ensembles of objects with the kinematics of dwarf galaxies on a small scale, while following the Hubble flow on a larger scale. Individual high redshift CIV components may be the building blocks of future normal galaxies in a hierarchical structure formation scenario.Comment: submitted to the ApJ Letters, March 16, 1996 (in press); (13 Latex pages, 4 Postscript figures, and psfig.sty included

    Testing Cosmological Models With A \lya Forest Statistic: The High End Of The Optical Depth Distribution

    Full text link
    We pay particular attention to the high end of the \lya optical depth distribution of a quasar spectrum. Based on the flux distribution (Miralda-Escud\'e et al 1996), a simple yet seemingly cosmological model -differentiating statistic, Δτ0\Delta_{\tau_0} -- the cumulative probability of a quasar spectrum with \lya optical depth greater than a high value τ0\tau_0 -- is emphasized. It is shown that two different models -- the cold dark matter model with a cosmological constant and the mixed hot and cold dark matter model, both normalized to COBE and local galaxy cluster abundance -- yield quite different values of Δτ0\Delta_{\tau_0}: 0.13 of the former versus 0.058 of the latter for τ0=3.0\tau_0=3.0 at z=3z=3. Moreover, it is argued that Δτ0\Delta_{\tau_0} may be fairly robust to compute theoretically because it does not seem to depend sensitively on small variations of simulations parameters such as radiation field, cooling, feedback process, radiative transfer, resolution and simulation volume within the plausible ranges of the concerned quantities. Furthermore, it is illustrated that Δτ0\Delta_{\tau_0} can be obtained sufficiently accurately from currently available observed quasar spectra for τ0∌3.0−4.0\tau_0\sim 3.0-4.0, when observational noise is properly taken into account. We anticipate that analyses of observations of quasar \lya absorption spectra over a range of redshift may be able to constrain the redshift evolution of the amplitude of the density fluctuations on small-to-intermediate scales, therefore providing an independent constraint on Ω0\Omega_0, Ω0,HDM\Omega_{0,HDM} and Λ0\Lambda_0.Comment: ApJ Letters, in press, substantial changes have been made from the last versio

    Chemical Enrichment at High Redshifts

    Get PDF
    We have tried to understand the recent observations related to metallicity in Ly α\alpha forest clouds in the framework of the two component model suggested by Chiba & Nath (1997). We find that even if the mini-halos were chemically enriched by an earlier generation of stars, to have [C/H] ≃\simeq -2.5, the number of C IV lines with column density >1012cm−2>10^{12} cm^{-2}, contributed by the mini-halos, at the redshift of 3, would be only about 10% of the total number of lines, for a chemical enrichment rate of (1+z)−3(1+z)^{-3} in the galaxies. Recently reported absence of heavy element lines associated with most of the Ly α\alpha lines with H I column density between 1013.5cm−210^{13.5} cm^{-2} and 1014cm−210^{14} cm^{-2} by Lu et al (1998), if correct, gives an upper limit on [C/H]=-3.7, not only in the mini-halos, but also in the outer parts of galactic halos. This is consistent with the results of numerical simulations, according to which, the chemical elements associated with the Ly α\alpha clouds are formed in situ in clouds, rather than in an earlier generation of stars. However, the mean value of 7×10−37 \times 10^{-3} for the column density ratio of C IV and H I, determined by Cowie and Songaila (1998) for low Lyman alpha optical depths, implies an abundance of [C/H] =-2.5 in mini-halos as well as in most of the region in galactic halos, presumably enriched by an earlier generation of stars. The redshift and column density distribution of C IV has been shown to be in reasonable agreement with the observations.Comment: 23 pages, 6 figures, To appear in Astrophysical Journa

    The mass-metallicity relation for high-redshift damped Ly-alpha galaxies

    Get PDF
    We used our database of ESO VLT-UVES spectra of quasars to build up a sample of 67 Damped Lyman-alpha (DLA) systems with redshifts 1.7<zabs<3.7. For each system, we measured average metallicities relative to Solar, [X/H] (with either X=Zn, S or Si), and the velocity widths of low-ionization line profiles, W1. We find that there is a tight correlation between the two quantities, detected at the 5sigma significance level. The existence of such a correlation, over more than two orders of magnitude spread in metallicity, is likely to be the consequence of an underlying mass-metallicity relation for the galaxies responsible for DLA absorption lines. The best-fit linear relation is [X/H]=1.35(\pm 0.11)\log W1 -3.69(\pm 0.18)$ with W1 expressed in km/s. While the slope of this velocity-metallicity relation is the same within uncertainties between the higher and the lower redshift bins of our sample, there is a hint of an increase of the intercept point of the relation with decreasing redshift. This suggests that galaxy halos of a given mass tend to become more metal-rich with time. Moreover, the slope of this relation is consistent with that of the luminosity-metallicity relation for local galaxies. The DLA systems having the lowest metallicities among the DLA population would therefore, on average, correspond to the galaxies having the lowest masses. In turn, these galaxies should have the lowest luminosities among the DLA galaxy population. This may explain the recent result that the few DLA systems with detected Ly-alpha emission have higher than average metallicities.Comment: proceedings of IAU Colloquium No. 199, 2005, ``Probing Galaxies through Quasar Absorption Lines'', P.R. Williams, C. Shu, B. Menard, ed

    Multiphase Plasma in Sub-Damped Lyman Alpha Systems: A Hidden Metal Reservoir

    Get PDF
    We present a VLT/UVES spectrum of a proximate sub-damped Lyman-alpha (sub-DLA) system at z=2.65618 toward the quasar Q0331-4505 (z_qso=2.6785+/-0.0030). Absorption lines of O I, Si II, Si III, Si IV, C II, C III, C IV, Fe II, Al II, and O VI are seen in the sub-DLA, which has a neutral hydrogen column density log N(H I)=19.82+/-0.05. The absorber is at a velocity of 1820+/-250 km/s from the quasar; however, its low metallicity [O/H]=-1.64+/-0.07, lack of partial coverage, lack of temporal variations between observations taken in 2003 and 2006, and non-detection of N V imply the absorber is not a genuine intrinsic system. By measuring the O VI column density and assuming equal metallicities in the neutral and ionized gas, we determine the column density of hot ionized hydrogen in this sub-DLA, and in two other sub-DLAs with O VI drawn from the literature. Coupling this with determinations of the typical amount of warm ionized hydrogen in sub-DLAs, we confirm that sub-DLAs are a more important metal reservoir than DLAs, in total comprising at least 6-22% of the metal budget at z~2.5.Comment: 5 pages, 3 color figures, accepted for publication in ApJ

    The Nature of Associated Absorption and the UV-X-ray Connection in 3C 288.1

    Full text link
    We discuss new Hubble Space Telescope spectroscopy of the radio-loud quasar, 3C 288.1. The data cover ~590 A to ~1610 A in the quasar rest frame. They reveal a wealth of associated absorption lines (AALs) with no accompanying Lyman-limit absorption. The metallic AALs range in ionization from C III and N III to Ne VIII and Mg X. We use these data and photoionization models to derive the following properties of the AAL gas: 1) There are multiple ionization zones within the AAL region, spanning a factor of at least ~50 in ionization parameter. 2) The overall ionization is consistent with the ``warm'' X-ray continuum absorbers measured in Seyfert 1 nuclei and other QSOs. However, 3) the column densities implied by the AALs in 3C 288.1 are too low to produce significant bound-free absorption at any UV-X-ray wavelengths. Substantial X-ray absorption would require yet another zone, having a much higher ionization or a much lower velocity dispersion than the main AAL region. 4) The total hydrogen column density in the AAL gas is log N_H (cm-2)= 20.2. 5) The metallicity is roughly half solar. 6) The AALs have deconvolved widths of ~900 km/s and their centroids are consistent with no shift from the quasar systemic velocity (conservatively within +/-1000 km/s). 7) There are no direct indicators of the absorber's location in our data, but the high ionization and high metallicity both suggest a close physical relationship to the quasar/host galaxy environment. Finally, the UV continuum shape gives no indication of a ``blue bump'' at higher energies. There is a distinct break of unknown origin at ~1030 A, and the decline toward higher energies (with spectral index alpha = -1.73, for f_nu ~ nu^alpha) is even steeper than a single power-law interpolation from 1030 A to soft X-rays.Comment: 27 pages with figures and tables, in press with Ap

    The Origin of C IV Absorption Systems at Redshifts z<1---Discovery of Extended C IV Envelopes Around Galaxies

    Get PDF
    (Abridged) We report the discovery of extended CIV gaseous envelopes around galaxies of a wide range of luminosity and morphological type. First, we show that CIV absorption systems are strongly clustered around galaxies on velocity scales of v < 250 km/s and impact parameter scales of rho < 100 h^{-1} kpc but not on larger velocity or impact parameter scales. Next, adopting measurements of galaxy properties presented in previous papers, we examine how properties of the CIV absorption systems depend on properties of the galaxies. On the basis of 14 galaxy and absorber pairs and 36 galaxies that do not produce corresponding CIV absorption lines to within sensitive upper limits, we find that: (1) Galaxies of a range of morphological type and luminosity appear to possess extended CIV gaseous envelopes of radius R ~ 100 h^{-1} kpc, with abrupt boundaries between the CIV absorbing and non-absorbing regions. (2) The extent of CIV-absorbing gas around galaxies scales with galaxy B-band luminosity as R \propto L_B^{0.5 +/- 0.1} but does not depend strongly on galaxy surface brightness, redshift, or morphological type. And (3) the covering factor of CIV clouds within ~ 100 h^{-1} kpc of galaxies is nearly unity, but there is a large scatter in the mean number of clouds encountered along the line of sight. The most significant implication of the study is that galaxies of a wide range of luminosity and morphological type are surrounded by chemically enriched gas that extends for at least ~ 100 h^{-1} kpc. We consider various scenarios that may have produced metals at large galactic distance and conclude that accreting satellites are most likely to be responsible for chemically enriched gas at large galactic distances to regular looking galaxies.Comment: 19 pages, 3 figures, to appear in ApJ, July 20 200
    • 

    corecore