37 research outputs found

    Molecular mechanisms of mitotane action in adrenocortical cancer based on in vitro studies

    Get PDF
    SIMPLE SUMMARY: Mitotane is the only approved drug for the treatment of advanced adrenocortical carcinoma and for postoperative adjuvant therapy. It is known that mitotane destroys the adrenal cortex impairing steroidogenesis, although its exact molecular mechanism is still unclear. However, confounding factors affecting in vitro experiments could reduce the relevance of the studies. In this review, we explore in vitro studies on mitotane effects, highlighting how different experimental conditions might contribute to the controversial findings. On this basis, it may be necessary to re-evaluate the experiments taking into account their potential confounding factors such as cell strains, culture serum, lipoprotein concentration, and culture passages, which could hide important molecular results. As a consequence, the identification of novel pharmacological molecular pathways might be used in the future to implement personalized therapy, maximizing the benefit of mitotane treatment while minimizing its toxicity. ABSTRACT: Mitotane is the only approved drug for the treatment of advanced adrenocortical carcinoma and is increasingly used for postoperative adjuvant therapy. Mitotane action involves the deregulation of cytochromes P450 enzymes, depolarization of mitochondrial membranes, and accumulation of free cholesterol, leading to cell death. Although it is known that mitotane destroys the adrenal cortex and impairs steroidogenesis, its exact mechanism of action is still unclear. The most used cell models are H295-derived cell strains and SW13 cell lines. The diverging results obtained in presumably identical cell lines highlight the need for a stable in vitro model and/or a standard methodology to perform experiments on H295 strains. The presence of several enzymatic targets responsive to mitotane in mitochondria and mitochondria-associated membranes causes progressive alteration in mitochondrial structure when cells were exposed to mitotane. Confounding factors of culture affecting in vitro experiments could reduce the significance of any molecular mechanism identified in vitro. To ensure experimental reproducibility, particular care should be taken in the choice of culture conditions: aspects such as cell strains, culture serum, lipoproteins concentration, and culture passages should be carefully considered and explicated in the presentation of results. We aimed to review in vitro studies on mitotane effects, highlighting how different experimental conditions might contribute to the controversial findings. If the concerns pointed out in this review will be overcome, the new insights into mitotane mechanism of action observed in-vitro could allow the identification of novel pharmacological molecular pathways to be used to implement personalized therapy

    Detection of SF3B1 p.Lys700Glu Mutation by PNA-PCR Clamping in Myelodysplastic Syndromes and Myeloproliferative Neoplasms

    Get PDF
    Mutations in SF3B1 are found in 20% of myelodysplastic syndromes and 5–10% of myeloproliferative neoplasms, where they are considered important for diagnosis and therapy decisions. Sanger sequencing and NGS are the currently available methods to identify SF3B1 mutations, but both are time-consuming and expensive techniques that are not practicable in most small-/medium-sized laboratories. To identify the most frequent SF3B1 mutation, p.Lys700Glu, we developed a novel fast and cheap assay based on PNA-PCR clamping. After setting the optimal PCR conditions, the limit of detection of PNA-PCR clamping was evaluated, and the method allowed up to 0.1% of mutated SF3B1 to be identified. Successively, PNA-PCR clamping and Sanger sequencing were used to blind test 90 DNA from patients affected by myelodysplastic syndromes and myeloproliferative neoplasms for the SF3B1 p.Lys700Glu mutation. PNA-PCR clamping and Sanger sequencing congruently identified 75 negative and 13 positive patients. Two patients identified as positive by PNA-PCR clamping were missed by Sanger analysis. The discordant samples were analyzed by NGS, which confirmed the PNA-PCR clamping result, indicating that these samples contained the SF3B1 p.Lys700Glu mutation. This approach could easily increase the characterization of myelodysplastic syndromes and myeloproliferative neoplasms in small-/medium-sized laboratories, and guide patients towards more appropriate therapy

    Estimating the mean and variance from the median, range, and the size of a sample

    Get PDF
    BACKGROUND: Usually the researchers performing meta-analysis of continuous outcomes from clinical trials need their mean value and the variance (or standard deviation) in order to pool data. However, sometimes the published reports of clinical trials only report the median, range and the size of the trial. METHODS: In this article we use simple and elementary inequalities and approximations in order to estimate the mean and the variance for such trials. Our estimation is distribution-free, i.e., it makes no assumption on the distribution of the underlying data. RESULTS: We found two simple formulas that estimate the mean using the values of the median (m), low and high end of the range (a and b, respectively), and n (the sample size). Using simulations, we show that median can be used to estimate mean when the sample size is larger than 25. For smaller samples our new formula, devised in this paper, should be used. We also estimated the variance of an unknown sample using the median, low and high end of the range, and the sample size. Our estimate is performing as the best estimate in our simulations for very small samples (n ≤ 15). For moderately sized samples (15 <n ≤ 70), our simulations show that the formula range/4 is the best estimator for the standard deviation (variance). For large samples (n > 70), the formula range/6 gives the best estimator for the standard deviation (variance). We also include an illustrative example of the potential value of our method using reports from the Cochrane review on the role of erythropoietin in anemia due to malignancy. CONCLUSION: Using these formulas, we hope to help meta-analysts use clinical trials in their analysis even when not all of the information is available and/or reported

    A genomic, transcriptomic and proteomic look at the GE2270 producer Planobispora rosea, an uncommon actinomycete

    Get PDF
    We report the genome sequence of Planobispora rosea ATCC 53733, a mycelium-forming soil-dweller belonging to one of the lesser studied genera of Actinobacteria and producing the thiopeptide GE2270. The P. rosea genome presents considerable convergence in gene organization and function with other members in the family Streptosporangiaceae, with a significant number (44%) of shared orthologs. Patterns of gene expression in P. rosea cultures during exponential and stationary phase have been analyzed using whole transcriptome shotgun sequencing and by proteome analysis. Among the differentially abundant proteins, those involved in protein metabolism are particularly represented, including the GE2270-insensitive EF-Tu. Two proteins from the pbt cluster, directing GE2270 biosynthesis, slightly increase their abundance values over time. While GE2270 production starts during the exponential phase, most pbt genes, as analyzed by qRT-PCR, are down-regulated. The exception is represented by pbtA, encoding the precursor peptide of the ribosomally synthesized GE2270, whose expression reached the highest level at the entry into stationary phase. Copyright

    Iron overload alters the energy metabolism in patients with myelodysplastic syndromes: results from the multicenter FISM BIOFER study

    Get PDF
    Myelodysplastic syndromes (MDS) are hematological malignancies characterized by ineffective hematopoiesis and increased apoptosis in the bone marrow, which cause peripheral cytopenia. Mitochondria are key regulators of apoptosis and a site of iron accumulation that favors reactive oxygen species (ROS) production with detrimental effects on cell survival. Although the energy metabolism could represent an attractive therapeutic target, it was poorly investigated in MDS. The purpose of the study was to analyze how the presence of myelodysplastic hematopoiesis, iron overload and chelation impact on mitochondrial metabolism. We compared energy balance, OxPhos activity and efficiency, lactic dehydrogenase activity and lipid peroxidation in mononuclear cells (MNCs), isolated from 38 MDS patients and 79 healthy controls. Our data show that ATP/AMP ratio is reduced during aging and even more in MDS due to a decreased OxPhos activity associated with an increment of lipid peroxidation. Moreover, the lactate fermentation enhancement was observed in MDS and elderly subjects, probably as an attempt to restore the energy balance. The biochemical alterations of MNCs from MDS patients have been partially restored by the in vitro iron chelation, while only slight effects were observed in the age-matched control samples. By contrast, the addition of iron chelators on MNCs from young healthy subjects determined a decrement in the OxPhos efficiency and an increment of lactate fermentation and lipid peroxidation. In summary, MDS-MNCs display an altered energy metabolism associated with increased oxidative stress, due to iron accumulation. This condition could be partially restored by iron chelatio

    Learning from history: the case of the San Carlone colossus after the test of time

    No full text
    The investigation of the state of preservation of the Colossus of San Carlo Borromeo in Arona, Italy, San Carlone, offered the opportunity to consider the preservation of cultural heritage through a holistic approach. The scientific interest of the statue arises from the observation of the reasonable state of conservation of its metallic materials. The statue, inaugurated in 1698, consists of an outer layer of embossed copper sheets fixed to an iron armature. It is exposed to atmospheric agents with favorable conditions for galvanic corrosion between the two metals. Despite this, both the copper and iron elements show a fairly good state of preservation. The study of documents and information about selected materials, construction events, transformations, and restoration interventions are fundamental to understanding those factors— environmental, technical, physical, historical—that have led to the relatively good condition of the statue. These studies were complemented with diagnostic analyses to provide some initial conclusions regarding the continued preservation of the statue
    corecore