10,155 research outputs found

    Termination of planetary accretion due to gap formation

    Full text link
    The process of gap formation by a growing planetary embryo embedded in a planetesimal disk is considered. It is shown that there exists a single parameter characterizing this process, which represents the competition between the gravitational influence of the embryo and planetesimal-planetesimal scattering. For realistic assumptions about the properties of the planetesimal disk and the planetary embryo, a gap is opened long before the embryo can accrete all the bodies within its region of influence. The implication of this result is that the embryo stops growing and, thus, large bodies formed during the coagulation stage should be less massive than is usually assumed. For conditions expected at 1 AU in the solar protoplanetary disk, gap formation is expected to occur around bodies of mass < 10^24 g. The effect of protoplanetary radial migration is also discussed.Comment: 21 pages, 3 figures, submitted to A

    Simulated CII observations for SPICA/SAFARI

    Full text link
    We investigate the case of CII 158 micron observations for SPICA/SAFARI using a three-dimensional magnetohydrodynamical (MHD) simulation of the diffuse interstellar medium (ISM) and the Meudon PDR code. The MHD simulation consists of two converging flows of warm gas (10,000 K) within a cubic box 50 pc in length. The interplay of thermal instability, magnetic field and self-gravity leads to the formation of cold, dense clumps within a warm, turbulent interclump medium. We sample several clumps along a line of sight through the simulated cube and use them as input density profiles in the Meudon PDR code. This allows us to derive intensity predictions for the CII 158 micron line and provide time estimates for the mapping of a given sky area.Comment: 4 pages, 5 figures, to appear in the proceedings of the workshop "The Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins of Planets and Galaxies" (July 2009, Oxford, United Kingdom

    Transient behavior of surface plasmon polaritons scattered at a subwavelength groove

    Get PDF
    We present a numerical study and analytical model of the optical near-field diffracted in the vicinity of subwavelength grooves milled in silver surfaces. The Green's tensor approach permits computation of the phase and amplitude dependence of the diffracted wave as a function of the groove geometry. It is shown that the field diffracted along the interface by the groove is equivalent to replacing the groove by an oscillating dipolar line source. An analytic expression is derived from the Green's function formalism, that reproduces well the asymptotic surface plasmon polariton (SPP) wave as well as the transient surface wave in the near-zone close to the groove. The agreement between this model and the full simulation is very good, showing that the transient "near-zone" regime does not depend on the precise shape of the groove. Finally, it is shown that a composite diffractive evanescent wave model that includes the asymptotic SPP can describe the wavelength evolution in this transient near-zone. Such a semi-analytical model may be useful for the design and optimization of more elaborate photonic circuits whose behavior in large part will be controlled by surface waves.Comment: 12 pages, 10 figure

    Search for surface magnetic fields in Mira stars. First detection in chi Cyg

    Full text link
    In order to complete the knowledge of the magnetic field and of its influence during the transition from Asymptotic Giant Branch to Planetary Nebulae stages, we have undertaken a search for magnetic fields at the surface of Mira stars. We used spectropolarimetric observations, collected with the Narval instrument at TBL, in order to detect - with Least Squares Deconvolution method - a Zeeman signature in the visible part of the spectrum. We present the first spectropolarimetric observations of the S-type Mira star chi Cyg, performed around its maximum light. We have detected a polarimetric signal in the Stokes V spectra and we have established its Zeeman origin. We claim that it is likely to be related to a weak magnetic field present at the photospheric level and in the lower part of the stellar atmosphere. We have estimated the strength of its longitudinal component to about 2-3 Gauss. This result favors a 1/r law for the variation of the magnetic field strength across the circumstellar envelope of chi Cyg. This is the first detection of a weak magnetic field at the stellar surface of a Mira star and we discuss its origin in the framework of shock waves periodically propagating throughout the atmosphere of these radially pulsating stars. At the date of our observations of chi Cyg, the shock wave reaches its maximum intensity, and it is likely that the shock amplifies a weak stellar magnetic field during its passage through the atmosphere. Without such an amplification by the shock, the magnetic field strength would have been too low to be detected. For the first time, we also report strong Stokes Q and U signatures (linear polarization) centered onto the zero velocity (i.e., at the shock front position). They seem to indicate that the radial direction would be favored by the shock during its propagation throughout the atmosphere.Comment: 9 pages, 4 figures accepted by Astronomy and Astrophysics (21 November 2013

    Discovery of starspots on Vega - First spectroscopic detection of surface structures on a normal A-type star

    Get PDF
    The theoretically studied impact of rapid rotation on stellar evolution needs to be confronted with the results of high resolution spectroscopy-velocimetry observations. A weak surface magnetic field had recently been detected in the A0 prototype star Vega, potentially leading to a (yet undetected) structured surface. The goal of this article is to present a thorough analysis of the line profile variations and associated estimators in the early-type standard star Vega (A0) in order reveal potential activity tracers, exoplanet companions and stellar oscillations. Vega was monitored in high-resolution spectroscopy with the velocimeter Sophie/OHP. A total of 2588 high S/N spectra was obtained during 5 nights (August 2012) at R = 75000 and covering the visible domain. For each reduced spectrum, Least Square Deconvolved (LSD) equivalent photospheric profiles were calculated with a Teff = 9500 and logg = 4.0 spectral line mask. Several methods were applied to study the dynamic behavior of the profile variations (evolution of radial velocity, bisectors, vspan, 2D profiles, amongst others). We present the discovery of a starspotted stellar surface in an A-type standard star with faint spot amplitudes Delta F/Fc ~5 10^{-4}. A rotational modulation of spectral lines with a period of rotation P = 0.68 d has clearly been exhibited, confirming the results of previous spectropolarimetric studies. Either a very thin convective layer can be responsible for magnetic field generation at small amplitudes, or a new mechanism has to be invoked in order to explain the existence of activity tracing starspots. This first strong evidence that standard A-type stars can show surface structures opens a new field of research and asks the question about a potential link with the recently discovered weak magnetic field discoveries in this category of stars.Comment: accepted for publication by Astronomy & Astrophysics (23rd of March 2015
    corecore