116 research outputs found

    Allometric Trajectories and \u201cStress\u201d: A Quantitative Approach

    Get PDF
    The term \u201cstress\u201d is an important but vague term in plant biology. We show situations in which thinking in terms of \u201cstress\u201d is profitably replaced by quantifying distance from functionally optimal scaling relationships between plant parts. These relationships include, for example, the often-cited one between leaf area and sapwood area, which presumably reflects mutual dependence between source and sink tissues and which scales positively within individuals and across species. These relationships seem to be so basic to plant functioning that they are favored by selection across nearly all plant lineages. Within a species or population, individuals that are far from the common scaling patterns are thus expected to perform negatively. For instance, \u201ctoo little\u201d leaf area (e.g. due to herbivory or disease) per unit of active stem mass would be expected to incur to low carbon income per respiratory cost and thus lead to lower growth. We present a framework that allows quantitative study of phenomena traditionally assigned to \u201cstress,\u201d without need for recourse to this term. Our approach contrasts with traditional approaches for studying \u201cstress,\u201d e.g. revealing that small \u201cstressed\u201d plants likely are in fact well suited to local conditions. We thus offer a quantitative perspective to the study of phenomena often referred to under such terms as \u201cstress,\u201d plasticity, adaptation, and acclimation

    Retrospective Analysis of Wood Anatomical Traits Reveals a Recent Extension in Tree Cambial Activity in Two High-Elevation Conifers

    Get PDF
    The study of xylogenesis or wood formation is a powerful, yet labor intensive monitoring approach to investigate intra-annual tree growth responses to environmental factors. However, it seldom covers more than a few growing seasons, so is in contrast to the much longer lifespan of woody plants and the time scale of many environmental processes. Here we applied a novel retrospective approach to test the long-term (1926–2012) consistency in the timing of onset and ending of cambial activity, and in the maximum cambial cell division rate in two conifer species, European larch and Norway spruce at high-elevation in the Alps. We correlated daily temperature with time series of cell number and lumen area partitioned into intra-annual sectors. For both species, we found a good correspondence (1–10 days offset) between the periods when anatomical traits had significant correlations with temperature in recent decades (1969–2012) and available xylogenesis data (1996–2005), previously collected at the same site. Yet, results for the 1926–1968 period indicate a later onset and earlier ending of the cambial activity by 6–30 days. Conversely, the peak in the correlation between annual cell number and temperature, which should correspond to the peak in secondary growth rate, was quite stable over time, with just a minor advance of 4–5 days in the recent decades. Our analyses on time series of wood anatomical traits proved useful to infer on past long-term changes in xylogenetic phases. Combined with intensive continuous monitoring, our approach will improve the understanding of tree responses to climate variability in both the short- and long-term context

    Consistent decrease in conifer embolism resistance from the stem apex to base resulting from axial trends in tracheid and pit traits

    Get PDF
    IntroductionDrought-induced embolism formation in conifers is associated with several tracheid and pit traits, which vary in parallel from stem apex to base. We tested whether this axial anatomical variability is associated with a progressive variation in embolism vulnerability along the stem from apex to base.MethodsWe assessed the tracheid hydraulic diameter (Dh), mean pit membrane area (PMA) and the xylem pressure at 50% loss of conductivity (P50) on longitudinal stem segments extracted at different distances from the stem apex (DFA) in a Picea abies and an Abies alba tree.ResultsIn both trees, Dh and PMA scaled with DFA0.2. P50 varied for more than 3 MPa from the treetop to the stem base, according to a scaling of -P50 with DFA-0.2. The largest Dh, PMA and P50 variation occurred for DFA<1.5 m. PMA and Dh scaled more than isometrically (exponent b=1.2). Pit traits vary proportionally with tracheid lumen diameter.Discussion and conclusionsApex-to-base trends in tracheid and pit traits, along with variations in P50, suggest a strong structure-function relationship that is influenced by DFA. Although the effect of DFA on P50 has not been extensively explored previously, we propose that analyzing the relationship between P50 and DFA could be crucial for a comprehensive assessment of embolism vulnerability at the individual level

    Scots pine trees react to drought by increasing xylem and phloem conductivities

    Get PDF
    Drought limits the long-distance transport of water in the xylem due to the reduced leaf-to-soil water potential difference and possible embolism-related losses of conductance, and of sugars in the phloem due to the higher viscosity of the dehydrated sugary solution. This condition can have cascading effects in water and carbon fluxes that may ultimately cause tree death. We hypothesize that the maintenance of xylem and phloem conductances is fundamental for survival also under reduced resource availability, when trees may produce effective and low C cost anatomical adjustments in the xylem and phloem close to the treetop where most of the hydraulic resistance is concentrated. We analyzed the treetop xylem and phloem anatomical characteristics in coexisting Scots pine trees symptomatic and non-symptomatic of drought-induced dieback. We selected the topmost 55 cm of the main stem and selected several sampling positions at different distances from the stem apex to test for differences in the axial patterns between the two groups of trees. We measured the annual ring area (RA), the tracheid hydraulic diameter (Dh) and cell wall thickness (CWT), the conductive phloem area (PAcond) and the average lumen diameter of the 20 largest phloem sieve cells (Dph). Declining trees grew less than the non-declining ones, and despite the similar axial scaling of anatomical traits, had larger Dh and lower CWT. Moreover, declining trees had wider Dph. Our results demonstrate that even under drought stress, maintenance of xylem and phloem efficiencies is of primary importance for survival, even if producing fewer larger tracheids may lead to a xylem more vulnerable to embolism formation

    Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem

    Get PDF
    The diameter of vascular conduits increases towards the stem base. It has been suggested that this profile is an efficient anatomical feature for reducing the hydraulic resistance when trees grow taller. However, the mechanism that controls the cell diameter along the plant is not fully understood. The timing of cell differentiation along the stem was investigated. Cambial activity and cell differentiation were investigated in a Picea abies tree (11.5 m in height) collecting microsamples at nine different heights (from 1 to 9 m) along the stem with a 4 d time interval. Wood sections (8-12 μm thick) were stained and observed under a light microscope with polarized light to differentiate the developing xylem cells. Cell wall lignification was detected using cresyl violet acetate. The first enlarging cells appeared almost simultaneously along the tree axis indicating that cambium activation is not height-dependent. A significant increase in the duration of the cell expansion phase was observed towards the tree base: at 9 m from the ground, xylem cells expanded for 7 d, at 6 m for 14 d, and at 3 m for 19 d. The duration of the expansion phase is positively correlated with the lumen area of the tracheids (r2=0.68, P < 0.01) at the same height. By contrast, thickness of the cell wall of the earlywood did not show any trend with height. The lumen area of the conduits down the stem appeared linearly dependent on time during which differentiating cells remained in the expansion phase. However, the inductive signal of such long-distance patterned differentiation remains to be identified

    X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance

    Get PDF
    Drought-induced xylem embolism is a serious threat to plant survival under future climate scenarios. Hence, accurate quantification of species-specific vulnerability to xylem embolism is a key to predict the impact of climate change on vegetation. Low-cost hydraulic measurements of embolism rate have been suggested to be prone to artefacts, thus requiring validation by direct visualization of the functional status of xylem conduits using nondestructive imaging techniques, such as X-ray microtomography (microCT). We measured the percentage loss of conductance (PLC) of excised stems of Laurus nobilis (laurel) dehydrated to different xylem pressures, and compared results with direct observation of gas-filled vs water-filled conduits at a synchrotron-based microCT facility using a phase contrast imaging modality. Theoretical PLC calculated on the basis of microCT observations in stems of laurel dehydrated to different xylem pressures overall were in agreement with hydraulic measurements, revealing that this species suffers a 50% loss of xylem hydraulic conductance at xylem pressures averaging 3.5 MPa. Our data support the validity of estimates of xylem vulnerability to embolism based on classical hydraulic techniques. We discuss possible causes of discrepancies between data gathered in this study and those of recent independent reports on laurel hydraulics
    corecore