35,015 research outputs found

    Acoustic measurements of a full-scale coaxial hingeless rotor helicopter

    Get PDF
    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept Technology Demonstrator in the 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, and noise at various forward speeds, rotor lift coefficients and rotor shaft angles of attack were investigated. The noise data were acquired over an isolated rotor lift coefficient range of 0.024 to 0.162, an advance ratio range of 0.23 to 0.45 corresponding to tunnel wind speeds of 89 to 160 knots, and angles of attack from 0 deg to 10 deg. Acoustic data are presented for seven microphone locations for all run conditions where the model noise is above the background noise. Model test configuration and performance information are also listed. Acoustic waveforms, dBA, and 1/3-octave spectra as functions of operating condition for selected data points and microphones are presented. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where significant impulsive blade/vortex interactions increase noise levels

    Study of multi-megawatt technology needs for photovoltaic space power systems. Volume 1: Executive summary

    Get PDF
    Possible missions requiring multimegawatt photovoltaic space power systems in the 1990's time frame and associated power system technology needs are examined. The following concepts for photovoltaic power approaches are considered: planar arrays, concentrating arrays, hybrid systems using Rankine engines, thermophotovoltaic and AC/DC power management approaches, battery, fuel cell, flywheel energy storage, and interactions with the electrical ion engine injection and stationkeeping system. The levels of modularity for efficient, safe, constructable, serviceable, and cost effective system design are analyzed, and the benefits of alternate approaches developed. Both manned low Earth orbit and unmanned geosynchronous Earth orbit applications were examined for technological development. Technology developments applicable to power systems which appear to have benefits independent of the absolute power level are suggested

    Development of aircraft brake materials

    Get PDF
    The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5)

    Meteoroid detector

    Get PDF
    A meteoroid detector is described which uses, a cold cathode discharge tube with a gas-pressurized cell in space for recording a meteoroid puncture of the cell and for determining the size of the puncture

    High Resolution Spectrometry of Leaf and Canopy Chemistry for Biochemical Cycling

    Get PDF
    High-resolution laboratory spectrophotometer and Airborne Imaging Spectrometer (AIS) data were used to analyze forest leaf and canopy chemistry. Fundamental stretching frequencies of organic bonds in the visible, near infrared and short-wave infrared are indicative of concentrations and total content of nitrogen, phosphorous, starch and sugar. Laboratory spectrophotometer measurements showed very strong negative correlations with nitrogen (measured using wet chemistry) in the visible wavelengths. Strong correlations with green wet canopy weight in the atmospheric water absorption windows were observed in the AIS data. A fairly strong negative correlation between the AIS data at 1500 nm and total nitrogen and nitrogen concentration was evident. This relationship corresponds very closely to protein absorption features near 1500 nm

    Diagnostics of the structure of AGN's broad line regions with reverberation mapping data: confirmation of the two-component broad line region model

    Full text link
    We re-examine the ten Reverberation Mapping (RM) sources with public data based on the two-component model of the Broad Line Region (BLR). In fitting their broad H-beta lines, six of them only need one Gaussian component, one of them has a double-peak profile, one has an irregular profile, and only two of them need two components, i.e., a Very Broad Gaussian Component (VBGC) and an Inter-Mediate Gaussian Component (IMGC). The Gaussian components are assumed to come from two distinct regions in the two-component model; they are Very Broad Line Region (VBLR) and Inter-Mediate Line region (IMLR). The two sources with a two-component profile are Mrk 509 and NGC 4051. The time lags of the two components of both sources satisfy tIMLR/tVBLR=VVBLR2/VIMLR2t_{IMLR}/t_{VBLR}=V^2_{VBLR}/V^2_{IMLR}, where tIMLRt_{IMLR} and tVBLRt_{VBLR} are the lags of the two components while VIMLRV_{IMLR} and VVBLRV_{VBLR} represent the mean gas velocities of the two regions, supporting the two-component model of the BLR of Active Galactic Nuclei (AGN). The fact that most of these ten sources only have the VBGC confirms the assumption that RM mainly measures the radius of the VBLR; consequently, the radius obtained from the R-L relationship mainly represent the radius of VBLR. Moreover, NGC 4051, with a lag of about 5 days in the one component model, is an outlier on the R-L relationship as shown in Kaspi et al. (2005); however this problem disappears in our two-component model with lags of about 2 and 6 days for the VBGC and IMGC, respectively.Comment: 7 pages, 5 figures. Accepted for publication in the Special Issue of Science in China (G) "Astrophysics of Black holes and Related Compact Objects

    A Variational Approach for Minimizing Lennard-Jones Energies

    Full text link
    A variational method for computing conformational properties of molecules with Lennard-Jones potentials for the monomer-monomer interactions is presented. The approach is tailored to deal with angular degrees of freedom, {\it rotors}, and consists in the iterative solution of a set of deterministic equations with annealing in temperature. The singular short-distance behaviour of the Lennard-Jones potential is adiabatically switched on in order to obtain stable convergence. As testbeds for the approach two distinct ensembles of molecules are used, characterized by a roughly dense-packed ore a more elongated ground state. For the latter, problems are generated from natural frequencies of occurrence of amino acids and phenomenologically determined potential parameters; they seem to represent less disorder than was previously assumed in synthetic protein studies. For the dense-packed problems in particular, the variational algorithm clearly outperforms a gradient descent method in terms of minimal energies. Although it cannot compete with a careful simulating annealing algorithm, the variational approach requires only a tiny fraction of the computer time. Issues and results when applying the method to polyelectrolytes at a finite temperature are also briefly discussed.Comment: 14 pages, uuencoded compressed postscript fil

    Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel

    Get PDF
    A shake test was conducted in the 80 by 120 foot Wind Tunnel at NASA Ames Research Center, using a load frame and dummy weights to simulate the weight of the NASA Rotor Test Apparatus. The simulated hub was excited with broadband random excitation, and accelerometer responses were measured at various locations. The transfer functions (acceleration per unit excitation force as a function of frequency) for each of the accelerometer responses were computed, and the data were analyzed using modal analysis to estimate the model parameters
    corecore