57 research outputs found

    Evolution and Prevention of Antibiotic Resistance: Small Molecule Inhibitors of Bacterial Recombination Enzymes

    Get PDF
    Antibiotic resistant bacteria are an ever-increasing problem for the modern chemotherapy of bacterial infectious diseases. The loss of effective antibiotic therapies due to antibiotic resistance and the withering antibiotic pipeline are resulting in a reemergence in deaths from bacterial infections. New strategies are needed to combat pathogenic bacteria and in this context bacterial targets involved in the development of resistance are emerging an intriguing candidates for inhibition studies. Recent evidence suggests that bacterial stress response pathways (i.e., SOS and competence for transformation) are responsible for accelerated genetic changes that ultimately establish antibiotic resistance. Intervening in these pathways by small molecule inhibition of key recombination enzymes, RecA and EndA, would impact the DNA repair, SOS mutagenesis and recombination-based horizontal gene transfer activities of these enzymes and hinder the acquisition of antibiotic resistance. Bacteria having loss-of-function mutations in the recA gene are more sensitive to antibiotic treatment and develop resistance more slowly or not at all. In addition, endA-null strains of S. pneumoniae have diminished transformation efficiencies and are unable to acquire resistance-conferring DNA. Therefore, we believe chemotherapeutic agents that impart these bacterial phenotypes could act synergistically with currently prescribed antibiotics to prevent the accumulation of populations that are resistant to them. Towards this goal, we sought to identify properly designed inhibitors of RecA and EndA. High-throughput screening (HTS) is recognized as a powerful tool in drug discovery to identify target-specific lead compounds. We developed rational high-throughput screening programs to discover small-molecule inhibitors of RecA and EndA. Through these studies, we have identified novel chemical classes that specifically target RecA or EndA and demonstrate that these enzymes hold potential as novel targets in the treatment of bacterial infections.Doctor of Philosoph

    PerSort Facilitates Characterization and Elimination of Persister Subpopulation in Mycobacteria.

    Get PDF
    Mycobacterium tuberculosis (MTB) generates phenotypic diversity to persist and survive the harsh conditions encountered during infection. MTB avoids immune effectors and antibacterial killing by entering into distinct physiological states. The surviving cells, persisters, are a major barrier to the timely and relapse-free treatment of tuberculosis (TB). We present for the first time, PerSort, a method to isolate and characterize persisters in the absence of antibiotic or other pressure. We demonstrate the value of PerSort to isolate translationally dormant cells that preexisted in small numbers within Mycobacterium species cultures growing under optimal conditions but that dramatically increased in proportion under stress conditions. The translationally dormant subpopulation exhibited multidrug tolerance and regrowth properties consistent with those of persister cells. Furthermore, PerSort enabled single-cell transcriptional profiling that provided evidence that the translationally dormant persisters were generated through a variety of mechanisms, including vapC30, mazF, and relA/spoT overexpression. Finally, we demonstrate that notwithstanding the varied mechanisms by which the persister cells were generated, they converge on a similar low-oxygen metabolic state that was reversed through activation of respiration to rapidly eliminate persisters fostered under host-relevant stress conditions. We conclude that PerSort provides a new tool to study MTB persisters, enabling targeted strategies to improve and shorten the treatment of TB.IMPORTANCE Mycobacterium tuberculosis (MTB) persists and survives antibiotic treatments by generating phenotypically heterogeneous drug-tolerant subpopulations. The surviving cells, persisters, are a major barrier to the relapse-free treatment of tuberculosis (TB), which is already killing \u3e1.8 million people every year and becoming deadlier with the emergence of multidrug-resistant strains. This study describes PerSort, a cell sorting method to isolate and characterize, without antibiotic treatment, translationally dormant persisters that preexist in small numbers within Mycobacterium cultures. Characterization of this subpopulation has discovered multiple mechanisms by which mycobacterial persisters emerge and unveiled the physiological basis for their dormant and multidrug-tolerant physiological state. This analysis has discovered that activating oxygen respiratory physiology using l-cysteine eliminates preexisting persister subpopulations, potentiating rapid antibiotic killing of mycobacteria under host-relevant stress. PerSort serves as a new tool to study MTB persisters for enabling targeted strategies to improve and shorten the treatment of TB

    High-Throughput Screening for RecA Inhibitors Using a Transcreener Adenosine 5′- O -Diphosphate Assay

    Get PDF
    The activities of the bacterial RecA protein are involved in the de novo development and transmission of antibiotic resistance genes, thus allowing bacteria to overcome the metabolic stress induced by antibacterial agents. RecA is ubiquitous and highly conserved among bacteria, but has only distant homologs in human cells. Together, this evidence points to RecA as a novel and attractive antibacterial drug target. All known RecA functions require the formation of a complex formed by multiple adenosine 5′-O-triphosphate (ATP)-bound RecA monomers on single-stranded DNA. In this complex, RecA hydrolyzes ATP. Although several methods for assessing RecA's ATPase activity have been reported, these assay conditions included relatively high concentrations of enzyme and ATP and thereby restricted the RecA conformational state. Herein, we describe the validation of commercial reagents (Transcreener® adenosine 5′-O-diphosphate [ADP]2 fluorescence polarization assay) for the high-throughput measurement of RecA's ATPase activity with lower concentrations of ATP and RecA. Under optimized conditions, ADP detection by the Transcreener reagent provided robust and reproducible activity data (Z′=0.92). Using the Transcreener assay, we screened 113,477 small molecules against purified RecA protein. In total, 177 small molecules were identified as confirmed hits, of which 79 were characterized by IC50 values ≤10 μM and 35 were active in bioassays with live bacteria. This set of compounds comprises previously unidentified scaffolds for RecA inhibition and represents tractable hit structures for efforts aimed at tuning RecA inhibitory activity in both biochemical and bacteriological assays

    Inhibitors of Streptococcus pneumoniae Surface Endonuclease EndA Discovered by High-Throughput Screening Using a PicoGreen Fluorescence Assay

    Get PDF
    The human commensal pathogen, Streptococcus pneumoniae, expresses a number of virulence factors that promote serious pneumococcal diseases, resulting in significant morbidity and mortality worldwide. These virulence factors may give S. pneumoniae the capacity to escape immune defenses, resist antimicrobial agents, or a combination of both. Virulence factors also present possible points of therapeutic intervention. The activities of the surface endonuclease, EndA, allow S. pneumoniae to establish invasive pneumococcal infection. EndA’s role in DNA uptake during transformation contributes to gene transfer and genetic diversitifcation. Moreover, EndA’s nuclease activity degrades the DNA backbone of neutrophil extracellular traps (NETs), allowing pneumococcus to escape host immune responses. Given its potential impact on pneumococcal pathogenicity, EndA is an attractive target for novel antimicrobial therapy. Herein, we describe the development of a high-throughput screening assay for the discovery of nuclease inhibitors. Nuclease-mediated digestion of double-stranded DNA was assessed using fluorescence intensity changes of the DNA dye ligand, PicoGreen. Under optimized conditions, the assay provided robust and reproducible activity data (Z'=0.87) and was used to screen 4727 small molecules against an imidazole-rescued variant of EndA. In total, 10 small molecules were confirmed as novel EndA inhibitors that may have utility as research tools for understanding pneumococcal pathogenesis, and ultimately drug discovery

    Transcriptional portrait of M. bovis BCG during biofilm production shows genes differentially expressed during intercellular aggregation and substrate attachment.

    Get PDF
    Mycobacterium tuberculosis and M. smegmatis form drug-tolerant biofilms through dedicated genetic programs. In support of a stepwise process regulating biofilm production in mycobacteria, it was shown elsewhere that lsr2 participates in intercellular aggregation, while groEL1 was required for biofilm maturation in M. smegmatis. Here, by means of RNA-Seq, we monitored the early steps of biofilm production in M. bovis BCG, to distinguish intercellular aggregation from attachment to a surface. Genes encoding for the transcriptional regulators dosR and BCG0114 (Rv0081) were significantly regulated and responded differently to intercellular aggregation and surface attachment. Moreover, a M. tuberculosis H37Rv deletion mutant in the Rv3134c-dosS-dosR regulon, formed less biofilm than wild type M. tuberculosis, a phenotype reverted upon reintroduction of this operon into the mutant. Combining RT-qPCR with microbiological assays (colony and surface pellicle morphologies, biofilm quantification, Ziehl-Neelsen staining, growth curve and replication of planktonic cells), we found that BCG0642c affected biofilm production and replication of planktonic BCG, whereas ethR affected only phenotypes linked to planktonic cells despite its downregulation at the intercellular aggregation step. Our results provide evidence for a stage-dependent expression of genes that contribute to biofilm production in slow-growing mycobacteria

    Single-cell Analysis of the Neonatal Immune System Across the Gestational Age Continuum

    Get PDF
    Although most causes of death and morbidity in premature infants are related to immune maladaptation, the premature immune system remains poorly understood. We provide a comprehensive single-cell depiction of the neonatal immune system at birth across the spectrum of viable gestational age (GA), ranging from 25 weeks to term. A mass cytometry immunoassay interrogated all major immune cell subsets, including signaling activity and responsiveness to stimulation. An elastic net model described the relationship between GA and immunome (R=0.85, p=8.75e-14), and unsupervised clustering highlighted previously unrecognized GA-dependent immune dynamics, including decreasing basal MAP-kinase/NFkB signaling in antigen presenting cells; increasing responsiveness of cytotoxic lymphocytes to interferon-a; and decreasing frequency of regulatory and invariant T cells, including NKT cells and MAIT cells. Knowledge gained from the analysis of the neonatal immune landscape across GA provides a mechanistic framework to understand the unique susceptibility of preterm infants to both hyper-inflammatory diseases and infections

    Path-seq identifies an essential mycolate remodeling program for mycobacterial host adaptation

    Get PDF
    The success of Mycobacterium tuberculosis (MTB) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path-seq) to sequence miniscule amounts of MTB transcripts within up to million-fold excess host RNA Using Path-seq and regulatory network analyses, we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1/desA2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection
    corecore