734 research outputs found
Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter
Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients
Does oculomotor inhibition of return influence fixation probability during scene search?
Oculomotor inhibition of return (IOR) is believed to facilitate scene scanning by decreasing the probability that gaze will return to a previously fixated location. This “foraging” hypothesis was tested during scene search and in response to sudden-onset probes at the immediately previous (one-back) fixation location. The latencies of saccades landing within 1º of the previous fixation location were elevated, consistent with oculomotor IOR. However, there was no decrease in the likelihood that the previous location would be fixated relative to distance-matched controls or an a priori baseline. Saccades exhibit an overall forward bias, but this is due to a general bias to move in the same direction and for the same distance as the last saccade (saccadic momentum) rather than to a spatially specific tendency to avoid previously fixated locations. We find no evidence that oculomotor IOR has a significant impact on return probability during scene search
The RR Lyrae Distance Scale
We review seven methods of measuring the absolute magnitude M_V of RR Lyrae
stars in light of the Hipparcos mission and other recent developments. We focus
on identifying possible systematic errors and rank the methods by relative
immunity to such errors. For the three most robust methods, statistical
parallax, trigonometric parallax, and cluster kinematics, we find M_V (at
[Fe/H] = -1.6) of 0.77 +/- 0.13, 0.71 +/- 0.15, 0.67 +/- 0.10. These methods
cluster consistently around 0.71 +/- 0.07. We find that Baade-Wesselink and
theoretical models both yield a broad range of possible values (0.45-0.70 and
0.45-0.65) due to systematic uncertainties in the temperature scale and input
physics. Main-sequence fitting gives a much brighter M_V = 0.45 +/- 0.04 but
this may be due to a difference in the metallicity scales of the cluster giants
and the calibrating subdwarfs. White-dwarf cooling-sequence fitting gives 0.67
+/- 0.13 and is potentially very robust, but at present is too new to be fully
tested for systematics. If the three most robust methods are combined with
Walker's mean measurement for 6 LMC clusters, V_{0,LMC} = 18.98 +/- 0.03 at
[Fe/H] = -1.9, then mu_{LMC} = 18.33 +/- 0.08.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21
pages including 1 table; uses Kluwer's crckapb.sty LaTeX style file, enclose
A Genome-Wide Analysis of Promoter-Mediated Phenotypic Noise in Escherichia coli
Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as “phenotypic noise.” In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alon
Recommended from our members
Attribution of 2012 extreme climate events: does air-sea interaction matter?
In 2012, extreme anomalous climate conditions occurred around the globe. Large areas of North America experienced an anomalously hot summer, with large precipitation deficits inducing severe drought. Over Europe, the summer of 2012 was marked by strong precipitation anomalies with the UK experiencing its wettest summer since 1912 while Spain suffered severe drought. What caused these extreme climate conditions in various regions in 2012? This study compares attribution conclusions for 2012 climate anomalies relative to a baseline period (1964–1981) based on two sets of parallel experiments with different model configurations (with coupling to an ocean mixed layer model or with prescribed sea surface temperatures) to assess whether attribution conclusions concerning the climate anomalies in 2012 are sensitive to the representation of air-sea interaction. Modelling results indicate that attribution conclusions for large scale surface air temperature (SAT) changes in both boreal winter and summer are generally robust and not very sensitive to air-sea interaction. This is especially true over southern Europe, Eurasia, North America, South America, and North Africa. Some other responses also appear to be insensitive to air-sea interaction: for example, forced increases in precipitation over northern Europe and Sahel, and reduced precipitation over North America and the Amazon in boreal summer. However, the attribution of circulation and precipitation changes for some other regions exhibits a sensitivity to air-sea interaction. Results from the experiments including coupling to an ocean mixed layer model show a positive NAO-like circulation response in the Atlantic sector in boreal winter and weak changes in the East Asian summer monsoon and precipitation over East Asia. With prescribed sea surface temperatures, some different responses arise over these two regions. Comparison with observed changes indicates that the coupled simulations generally agree better with observations, demonstrating that attribution methods based on atmospheric general circulation models have limitations and may lead to erroneous attribution conclusions for regional anomalies in circulation, precipitation and surface air temperature
Precision Measurement of the Mass of the h_c(1P1) State of Charmonium
A precision measurement of the mass of the h_c(1P1) state of charmonium has
been made using a sample of 24.5 million psi(2S) events produced in e+e-
annihilation at CESR. The reaction used was psi(2S) -> pi0 h_c, pi0 -> gamma
gamma, h_c -> gamma eta_c, and the reaction products were detected in the
CLEO-c detector.
Data have been analyzed both for the inclusive reaction and for the exclusive
reactions in which eta_c decays are reconstructed in fifteen hadronic decay
channels. Consistent results are obtained in the two analyses. The averaged
results of the present measurements are M(h_c)=3525.28+-0.19 (stat)+-0.12(syst)
MeV, and B(psi(2S) -> pi0 h_c)xB(h_c -> gamma eta_c)= (4.19+-0.32+-0.45)x10^-4.
Using the 3PJ centroid mass, Delta M_hf(1P)= - M(h_c) =
+0.02+-0.19+-0.13 MeV.Comment: 9 pages, available through http://www.lns.cornell.edu/public/CLNS/,
submitted to PR
Precision Measurement of B(D+ -> mu+ nu) and the Pseudoscalar Decay Constant fD+
We measure the branching ratio of the purely leptonic decay of the D+ meson
with unprecedented precision as B(D+ -> mu+ nu) = (3.82 +/- 0.32 +/-
0.09)x10^(-4), using 818/pb of data taken on the psi(3770) resonance with the
CLEO-c detector at the CESR collider. We use this determination to derive a
value for the pseudoscalar decay constant fD+, combining with measurements of
the D+ lifetime and assuming |Vcd| = |Vus|. We find fD+ = (205.8 +/- 8.5 +/-
2.5) MeV. The decay rate asymmetry [B(D+ -> mu+ nu)-B(D- -> mu- nu)]/[B(D+ ->
mu+ nu)+B(D- -> mu- nu)] = 0.08 +/- 0.08, consistent with no CP violation. We
also set 90% confidence level upper limits on B(D+ -> tau+ nu) < 1.2x10^(-3)
and B(D+ -> e+ nu) < 8.8x10^(-6).Comment: 24 pages, 11 figures and 6 tables, v2 replaced some figure vertical
axis scales, v3 corrections from PRD revie
J/psi and psi(2S) Radiative Transitions to eta_c
Using 24.5 million psi(2S) decays collected with the CLEO-c detector at CESR
we present the most precise measurements of magnetic dipole transitions in the
charmonium system. We measure B(psi(2S)->gamma eta_c) =
(4.32+/-0.16+/-0.60)x10^-3, B(J/psi->gamma eta_c)/B(psi(2S)->gamma eta_c) =
4.59+/-0.23+/-0.64, and B(J/psi->gamma eta_c) = (1.98+/-0.09+/-0.30)%. We
observe a distortion in the eta_c line shape due to the photon-energy
dependence of the magnetic dipole transition rate. We find that measurements of
the eta_c mass are sensitive to the line shape, suggesting an explanation for
the discrepancy between measurements of the eta_c mass in radiative transitions
and other production mechanisms.Comment: 11 pages, 3 figure
Inclusive chi_bJ(nP) Decays to D0 X
Using Upsilon(2S) and Upsilon(3S) data collected with the CLEO III detector
we have searched for decays of chi_bJ to final states with open charm. We fully
reconstruct D0 mesons with p_D0 > 2.5 GeV/c in three decay modes (K-pi+,
K-pi+pi0, and K-pi-pi+pi+) in coincidence with radiative transition photons
that tag the production of one of the chi_bJ(nP) states. We obtain significant
signals for the two J=1 states. Recent NRQCD calculations of chi_{bJ}(nP) --> c
cbar X depend on one non-perturbative parameter per chi_bJ triplet. The
extrapolation from the observed D0 X rate over a limited momentum range to a
full c cbar X rate also depends on these same parameters. Using our data to fit
for these parameters, we extract results which agree well with NRQCD
predictions, confirming the expectation that charm production is largest for
the J=1 states. In particular, for J=1, our results are consistent with c cbar
g accounting for about one-quarter of all hadronic decays.Comment: Version 2 updates include corrections to important errors in Table V
and VII column headers which summarize results, and additional minor edits.
17 pages, available through http://www.lns.cornell.edu/public/CLNS
Measurement of the Absolute Branching Fraction of D_s^+ --> tau^+ nu_tau Decay
Using a sample of tagged D_s decays collected near the D^*_s D_s peak
production energy in e+e- collisions with the CLEO-c detector, we study the
leptonic decay D^+_s to tau^+ nu_tau via the decay channel tau^+ to e^+ nu_e
bar{nu}_tau. We measure B(D^+_s to tau^+ nu_tau) = (6.17 +- 0.71 +- 0.34) %,
where the first error is statistical and the second systematic. Combining this
result with our measurements of D^+_s to mu^+ nu_mu and D^+_s to tau^+ nu_tau
(via tau^+ to pi^+ bar{nu}_tau), we determine f_{D_s} = (274 +- 10 +- 5) MeV.Comment: 9 pages, postscript also available through
http://www.lns.cornell.edu/public/CLNS/2007/, revise
- …