66 research outputs found

    Directed flow, a signal for the phase transition in Relativistic Nuclear Collisions?

    Full text link
    The sign change of the slope of the directed flow of baryons has been predicted as a signal for a first order phase transition within fluid dynamical calculations. Recently, the directed flow of identified particles has been measured by the STAR collaboration in the beam energy scan (BES) program. In this article, we examine the collision energy dependence of directed flow v1v_1 in fluid dynamical model descriptions of heavy ion collisions for sNN=3−20\sqrt{s_{NN}}=3-20 GeV. The first step is to reproduce the existing predictions within pure fluid dynamical calculations. As a second step we investigate the influence of the order of the phase transition on the anisotropic flow within a state-of-the-art hybrid approach that describes other global observables reasonably well. We find that, in the hybrid approach, there seems to be no sensitivity of the directed flow on the equation of state and in particular on the existence of a first order phase transition. In addition, we explore more subtle sensitivities like e.g. the Cooper-Frye transition criterion and discuss how momentum conservation and the definition of the event plane affects the results. At this point, none of our calculations matches qualitatively the behavior of the STAR data, the values of the slopes are always larger than in the data.Comment: 7 pages, 7 figure

    Estimation of the shear viscosity at finite net-baryon density from A+A collision data at sNN=7.7−200\sqrt{s_\mathrm{NN}} = 7.7-200 GeV

    Full text link
    Hybrid approaches based on relativistic hydrodynamics and transport theory have been successfully applied for many years for the dynamical description of heavy ion collisions at ultrarelativistic energies. In this work a new viscous hybrid model employing the hadron transport approach UrQMD for the early and late non-equilibrium stages of the reaction, and 3+1 dimensional viscous hydrodynamics for the hot and dense quark-gluon plasma stage is introduced. This approach includes the equation of motion for finite baryon number, and employs an equation of state with finite net-baryon density to allow for calculations in a large range of beam energies. The parameter space of the model is explored, and constrained by comparison with the experimental data for bulk observables from SPS and the phase I beam energy scan at RHIC. The favored parameter values depend on energy, but allow to extract the effective value of the shear viscosity coefficient over entropy density ratio η/s\eta/s in the fluid phase for the whole energy region under investigation. The estimated value of η/s\eta/s increases with decreasing collision energy, which may indicate that η/s\eta/s of the quark-gluon plasma depends on baryochemical potential μB\mu_B.Comment: minor changes in the text, results for constant eta*T/w added. Version accepted for publication in Phys. Rev.

    Hadronic and electromagnetic probes of hot and dense matter in a Boltzmann+Hydrodynamics model of relativistic nuclear collisions

    Get PDF
    We present recent results on bulk observables and electromagnetic probes obtained using a hybrid approach based on the Ultrarelativistic Quantum Molecular Dynamics transport model with an intermediate hydrodynamic stage for the description of heavy-ion collisions at AGS, SPS and RHIC energies. After briefly reviewing the main results for particle multiplicities, elliptic flow, transverse momentum and rapidity spectra, we focus on photon and dilepton emission from hot and dense hadronic matter.Comment: To appear in the proceedings of WISH 2010: International Workshop on Interplay between Soft and Hard interactions in particle production at ultrarelativistic energies, Catania, Italy, 8-10 September 201

    Centrality and Energy Dependence of Proton, Light Fragment and Hyperon Production

    Get PDF
    Recent results of the NA49 collaboration are discussed. These include the energy dependence of stopping and the production of the light fragments t and 3He. New data on the system size dependence of hyperon production at 40A and 158AGeV are also presented.Comment: 4 pages, Quark Matter 2006 proceeding
    • …
    corecore