244 research outputs found

    Seroprevalence of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in Danish horses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Borrelia burgdorferi </it>sensu lato and <it>Anaplasma phagocytophilum </it>are able to infect horses. However, the extend to which Danish horses are infected and seroconvert due to these two bacteria is unknown. The aim of the present study was to evaluate the seroprevalence of <it>B. burgdorferi </it>sensu lato and <it>A. phagocytophilum </it>in Danish horses.</p> <p>Methods</p> <p>A total of 390 blood samples collected from all major regions of Denmark and with a geographical distribution corresponding to the density of the Danish horse population were analyzed. All samples were examined for the presence of antibodies against <it>B. burgdorferi </it>sensu lato and <it>A. phagocytophilum </it>by the use of the SNAP<sup>®</sup>4DX <sup>® </sup>ELISA test.</p> <p>Results</p> <p>Overall, 29.0% of the horses were seropositive for <it>B. burgdorferi </it>sensu lato whereas 22.3% were seropositive for <it>A. phagocytophilum</it>.</p> <p>Conclusions</p> <p>Antibodies against <it>B burgdorferi </it>sensu lato and <it>A. phagocytophilum </it>are commonly found among Danish horses thus showing that Danish horses are frequently infected by these organisms.</p

    Layered van der Waals crystals with hyperbolic light dispersion

    Get PDF
    AbstractCompared to artificially structured hyperbolic metamaterials, whose performance is limited by the finite size of the metallic components, the sparse number of naturally hyperbolic materials recently discovered are promising candidates for the next generation of hyperbolic materials. Using first-principles calculations, we extend the number of known naturally hyperbolic materials to the broad class of layered transition metal dichalcogenides (TMDs). The diverse electronic properties of the transition metal dichalcogenides result in a large variation of the hyperbolic frequency regimes ranging from the near-infrared to the ultraviolet. Combined with the emerging field of van der Waals heterostructuring, we demonstrate how the hyperbolic properties can be further controlled by stacking different two-dimensional crystals opening new perspectives for atomic-scale design of photonic metamaterials. As an application, we identify candidates for Purcell factor control of emission from diamond nitrogen-vacancy centers.</jats:p

    Inflammatory responses to induced infectious endometritis in mares resistant or susceptible to persistent endometritis

    Get PDF
    BACKGROUND: The objective of the study was to evaluate the gene expression of inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-8, IL-10, tumor necrosis factor [TNF]-α, IL-1 receptor antagonist [ra] and serum amyloid A (SAA) in endometrial tissue and circulating leukocytes in response to uterine inoculation of 105 colony forming units (CFU) Escherichia coli in mares. Before inoculation, mares were classified as resistant or susceptible to persistent endometritis based on their uterine inflammatory response to infusion of 109 killed spermatozoa and histological assessment of the endometrial quality. Endometrial biopsies were obtained 3, 12, 24 and 72 hours (h) after bacterial inoculation and blood samples were obtained during the 7 day period post bacterial inoculation. Expression levels of cytokines and SAA were determined by quantitative real-time reverse transcriptase PCR (qRT-PCR). RESULTS: Compared to levels in a control biopsy (obtained in the subsequent estrous), resistant mares showed an up-regulation of IL-1β, IL-6, IL-8 and TNF-α at 3 h after E. coli inoculation, while susceptible mares showed increased gene expression of IL-6 and IL-1ra. Susceptible mares had a significant lower gene expression of TNF-α,IL-6 and increased expression of IL-1ra 3 h after E. coli inoculation compared to resistant mares. Susceptible mares showed a sustained and prolonged inflammatory response with increased gene expression levels of IL-1β, IL-8, IL-1ra and IL-1β:IL-1ra ratio throughout the entire study period (72 h), whereas levels in resistant mares returned to estrous control levels by 12 hours. Endometrial mRNA transcripts of IL-1β and IL-1ra were significantly higher in mares with heavy uterine bacterial growth compared to mares with no/mild growth.All blood parameters were unaffected by intrauterine E. coli infusion, except for a lower gene expression of IL-10 at 168 h and an increased expression of IL-1ra at 48 h observed in susceptible mares compared to resistant mares. CONCLUSIONS: The current investigation suggests that endometrial mRNA transcripts of pro-inflammatory cytokines in response to endometritis are finely regulated in resistant mares, with initial high expression levels followed by normalization within a short period of time. Susceptible mares had a prolonged expression of pro-inflammatory cytokines, supporting the hypothesis that an unbalanced endometrial gene expression of inflammatory cytokines might play an important role in the pathogenesis of persistent endometritis

    The Danish Gigaword Project

    Full text link
    Danish is a North Germanic/Scandinavian language spoken primarily in Denmark, a country with a tradition of technological and scientific innovation. However, from a technological perspective, the Danish language has received relatively little attention and, as a result, Danish language technology is hard to develop, in part due to a lack of large or broad-coverage Danish corpora. This paper describes the Danish Gigaword project, which aims to construct a freely-available one billion word corpus of Danish text that represents the breadth of the written language

    Is paternal age associated with transfer day, developmental stage, morphology, and initial hCG-rise of the competent blastocyst leading to live birth?:A multicenter cohort study

    Get PDF
    In this study we investigated whether age of men undergoing assisted reproductive technology (ART) treatment was associated with day of transfer, stage, morphology, and initial hCG-rise of the competent blastocyst leading to a live birth? The design was a multicenter historical cohort study based on exposure (age) and outcome data (blastocyst stage and morphology and initial hCG-rise) from men whose partner underwent single blastocyst transfer resulting in singleton pregnancy/birth. The ART treatments were carried out at sixteen private and university-based public fertility clinics. We included 7246 men and women, who between 2014 and 2018 underwent controlled ovarian stimulation (COS) or Frozen-thawed Embryo Transfer (FET) with a single blastocyst transfer resulting in singleton pregnancy were identified. 4842 men with a partner giving birth were included, by linking data to the Danish Medical Birth Registry. We showed that the adjusted association between paternal age and transfer day in COS treatments was OR 1.06, 95% CI (1.00;1.13). Meaning that for every increase of one year, men had a 6% increased probability that the competent blastocyst was transferred on day 6 compared to day 5. Further we showed that the mean difference in hCG values when comparing paternal age group 30–34, 35–39 and 40–45 with the age group 25–29 in those receiving COS treatment, all showed significantly lower adjusted values for older men. In conclusion we hypothesize that the later transfer (day 6) in female partners of older men may be due to longer time spent by the oocyte to repair fragmented DNA of the sperm cells, which should be a focus of future research in men

    The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    Get PDF
    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping

    Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber

    Get PDF
    Abstract Supercontinuum (SC) generation based on ultrashort pulse compression constitutes one of the most promising technologies towards ultra-wide bandwidth, high-brightness, and spatially coherent light sources for applications such as spectroscopy and microscopy. Here, multi-octave SC generation in a gas-filled hollow-core antiresonant fiber (HC-ARF) is reported spanning from 200 nm in the deep ultraviolet (DUV) to 4000 nm in the mid-infrared (mid-IR) having an output energy of 5 μJ. This was obtained by pumping at the center wavelength of the first anti-resonant transmission window (2460 nm) with ~100 fs pulses and an injected pulse energy of ~8 μJ. The mechanism behind the extreme spectral broadening relies upon intense soliton-plasma nonlinear dynamics which leads to efficient soliton self-compression and phase-matched dispersive wave (DW) emission in the DUV region. The strongest DW is observed at 275 nm which corresponds to the calculated phase-matching wavelength of the pump. Furthermore, the effect of changing the pump pulse energy and gas pressure on the nonlinear dynamics and their direct impact on SC generation was investigated. This work represents another step towards gas-filled fiber-based coherent sources, which is set to have a major impact on applications spanning from DUV to mid-IR
    corecore